Lipeng Xie , Yongrui Xu , Mingfeng Zheng , Yundi Chen , Min Sun , Michael A. Archer , Wenjun Mao , Yubing Tong , Yuan Wan
{"title":"An anthropomorphic diagnosis system of pulmonary nodules using weak annotation-based deep learning","authors":"Lipeng Xie , Yongrui Xu , Mingfeng Zheng , Yundi Chen , Min Sun , Michael A. Archer , Wenjun Mao , Yubing Tong , Yuan Wan","doi":"10.1016/j.compmedimag.2024.102438","DOIUrl":null,"url":null,"abstract":"<div><div>The accurate categorization of lung nodules in CT scans is an essential aspect in the prompt detection and diagnosis of lung cancer. The categorization of grade and texture for nodules is particularly significant since it can aid radiologists and clinicians to make better-informed decisions concerning the management of nodules. However, currently existing nodule classification techniques have a singular function of nodule classification and rely on an extensive amount of high-quality annotation data, which does not meet the requirements of clinical practice. To address this issue, we develop an anthropomorphic diagnosis system of pulmonary nodules (PN) based on deep learning (DL) that is trained by weak annotation data and has comparable performance to full-annotation based diagnosis systems. The proposed system uses DL models to classify PNs (benign vs. malignant) with weak annotations, which eliminates the need for time-consuming and labor-intensive manual annotations of PNs. Moreover, the PN classification networks, augmented with handcrafted shape features acquired through the ball-scale transform technique, demonstrate capability to differentiate PNs with diverse labels, including pure ground-glass opacities, part-solid nodules, and solid nodules. Through 5-fold cross-validation on two datasets, the system achieved the following results: (1) an Area Under Curve (AUC) of 0.938 for PN localization and an AUC of 0.912 for PN differential diagnosis on the LIDC-IDRI dataset of 814 testing cases, (2) an AUC of 0.943 for PN localization and an AUC of 0.815 for PN differential diagnosis on the in-house dataset of 822 testing cases. In summary, our system demonstrates efficient localization and differential diagnosis of PNs in a resource limited environment, and thus could be translated into clinical use in the future.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"118 ","pages":"Article 102438"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001150","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate categorization of lung nodules in CT scans is an essential aspect in the prompt detection and diagnosis of lung cancer. The categorization of grade and texture for nodules is particularly significant since it can aid radiologists and clinicians to make better-informed decisions concerning the management of nodules. However, currently existing nodule classification techniques have a singular function of nodule classification and rely on an extensive amount of high-quality annotation data, which does not meet the requirements of clinical practice. To address this issue, we develop an anthropomorphic diagnosis system of pulmonary nodules (PN) based on deep learning (DL) that is trained by weak annotation data and has comparable performance to full-annotation based diagnosis systems. The proposed system uses DL models to classify PNs (benign vs. malignant) with weak annotations, which eliminates the need for time-consuming and labor-intensive manual annotations of PNs. Moreover, the PN classification networks, augmented with handcrafted shape features acquired through the ball-scale transform technique, demonstrate capability to differentiate PNs with diverse labels, including pure ground-glass opacities, part-solid nodules, and solid nodules. Through 5-fold cross-validation on two datasets, the system achieved the following results: (1) an Area Under Curve (AUC) of 0.938 for PN localization and an AUC of 0.912 for PN differential diagnosis on the LIDC-IDRI dataset of 814 testing cases, (2) an AUC of 0.943 for PN localization and an AUC of 0.815 for PN differential diagnosis on the in-house dataset of 822 testing cases. In summary, our system demonstrates efficient localization and differential diagnosis of PNs in a resource limited environment, and thus could be translated into clinical use in the future.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.