Engineering of HEK293T Cell Factory for Lentiviral Production by High-Throughput Selected Genes.

IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY CRISPR Journal Pub Date : 2024-10-01 Epub Date: 2024-10-16 DOI:10.1089/crispr.2024.0016
Zhang Xinyue, Siwei Li, Wang Yujie, Dai Yingcai, Bi Changhao, Zhang Xueli
{"title":"Engineering of HEK293T Cell Factory for Lentiviral Production by High-Throughput Selected Genes.","authors":"Zhang Xinyue, Siwei Li, Wang Yujie, Dai Yingcai, Bi Changhao, Zhang Xueli","doi":"10.1089/crispr.2024.0016","DOIUrl":null,"url":null,"abstract":"<p><p>Lentiviral vectors (LVs) are crucial tools in gene therapy and bioproduction, but high-yield LV production systems are urgently needed. Using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 high-throughput screening, we identified nine critical genes (<i>LDAH, GBP3, BPIFC, NHLRC1, NHLRC3, ZNF425, TTC37, LRRC4B</i>, and <i>SPINK6</i>) from 17,501 genes that limit LV packaging and formation. Knocking out these genes in HEK293T cells significantly increased virus production, with <i>LDAH</i> knockout exhibiting a 6.63-fold increase. Studies on multigene knockouts demonstrated that the cumulative effects of different gene knockouts can significantly enhance lentivirus production in HEK293T cells. Triple knockout of <i>GBP3, BPIFC</i>, and <i>LDAH</i> increased LV titer by ∼8.33-fold, and knockout (or knockdown) of <i>GBP3, NHLRC1,</i> and <i>NHLRC3</i> increased LV titer by ∼6.53-fold. This study established HEK293T cell lines with multiple genes knockout for efficient LV production, providing reliable technical support for LV production and application and offering new perspectives for studying LV packaging mechanisms and related virus research.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"7 5","pages":"272-282"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2024.0016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Lentiviral vectors (LVs) are crucial tools in gene therapy and bioproduction, but high-yield LV production systems are urgently needed. Using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 high-throughput screening, we identified nine critical genes (LDAH, GBP3, BPIFC, NHLRC1, NHLRC3, ZNF425, TTC37, LRRC4B, and SPINK6) from 17,501 genes that limit LV packaging and formation. Knocking out these genes in HEK293T cells significantly increased virus production, with LDAH knockout exhibiting a 6.63-fold increase. Studies on multigene knockouts demonstrated that the cumulative effects of different gene knockouts can significantly enhance lentivirus production in HEK293T cells. Triple knockout of GBP3, BPIFC, and LDAH increased LV titer by ∼8.33-fold, and knockout (or knockdown) of GBP3, NHLRC1, and NHLRC3 increased LV titer by ∼6.53-fold. This study established HEK293T cell lines with multiple genes knockout for efficient LV production, providing reliable technical support for LV production and application and offering new perspectives for studying LV packaging mechanisms and related virus research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过高通量选择基因对 HEK293T 细胞工厂进行工程改造,以生产慢病毒。
慢病毒载体(LV)是基因治疗和生物生产的重要工具,但目前急需高产的 LV 生产系统。利用聚类规则间隔短回文重复序列(CRISPR)-CRISPR相关蛋白9高通量筛选,我们从17501个基因中发现了9个限制LV包装和形成的关键基因(LDAH、GBP3、BPIFC、NHLRC1、NHLRC3、ZNF425、TTC37、LRRC4B和SPINK6)。在 HEK293T 细胞中敲除这些基因可显著提高病毒产量,其中 LDAH 基因敲除的产量提高了 6.63 倍。对多基因敲除的研究表明,不同基因敲除的累积效应可显著提高 HEK293T 细胞中慢病毒的产量。GBP3、BPIFC和LDAH的三重基因敲除使LV滴度增加了8.33倍,GBP3、NHLRC1和NHLRC3的基因敲除(或敲除)使LV滴度增加了6.53倍。该研究建立了多基因敲除的HEK293T细胞系,实现了LV的高效生产,为LV的生产和应用提供了可靠的技术支持,为研究LV的包装机制和相关病毒研究提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CRISPR Journal
CRISPR Journal Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍: In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR. Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.
期刊最新文献
Engineering CjCas9 for Efficient Base Editing and Prime Editing. CRISPR-Cas9-Mediated Targeting of Multidrug Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Early Detection of Wildlife Disease Pathogens Using CRISPR-Cas System Methods. CRISPR-GRIT: Guide RNAs with Integrated Repair Templates Enable Precise Multiplexed Genome Editing in the Diploid Fungal Pathogen Candida albicans. Genome Editing in Apicomplexan Parasites: Current Status, Challenges, and Future Possibilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1