Systematic benchmark of single-cell hashtag demultiplexing approaches reveals robust performance of a clustering-based method.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Briefings in Functional Genomics Pub Date : 2025-01-15 DOI:10.1093/bfgp/elae039
Mohammed Sayed, Yue Julia Wang, Hee-Woong Lim
{"title":"Systematic benchmark of single-cell hashtag demultiplexing approaches reveals robust performance of a clustering-based method.","authors":"Mohammed Sayed, Yue Julia Wang, Hee-Woong Lim","doi":"10.1093/bfgp/elae039","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell technology opened up a new avenue to delineate cellular status at a single-cell resolution and has become an essential tool for studying human diseases. Multiplexing allows cost-effective experiments by combining multiple samples and effectively mitigates batch effects. It starts by giving each sample a unique tag and then pooling them together for library preparation and sequencing. After sequencing, sample demultiplexing is performed based on tag detection, where cells belonging to one sample are expected to have a higher amount of the corresponding tag than cells from other samples. However, in reality, demultiplexing is not straightforward due to the noise and contamination from various sources. Successful demultiplexing depends on the efficient removal of such contamination. Here, we perform a systematic benchmark combining different normalization methods and demultiplexing approaches using real-world data and simulated datasets. We show that accounting for sequencing depth variability increases the separability between tagged and untagged cells, and the clustering-based approach outperforms existing tools. The clustering-based workflow is available as an R package from https://github.com/hwlim/hashDemux.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735735/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell technology opened up a new avenue to delineate cellular status at a single-cell resolution and has become an essential tool for studying human diseases. Multiplexing allows cost-effective experiments by combining multiple samples and effectively mitigates batch effects. It starts by giving each sample a unique tag and then pooling them together for library preparation and sequencing. After sequencing, sample demultiplexing is performed based on tag detection, where cells belonging to one sample are expected to have a higher amount of the corresponding tag than cells from other samples. However, in reality, demultiplexing is not straightforward due to the noise and contamination from various sources. Successful demultiplexing depends on the efficient removal of such contamination. Here, we perform a systematic benchmark combining different normalization methods and demultiplexing approaches using real-world data and simulated datasets. We show that accounting for sequencing depth variability increases the separability between tagged and untagged cells, and the clustering-based approach outperforms existing tools. The clustering-based workflow is available as an R package from https://github.com/hwlim/hashDemux.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞标签解复用方法的系统基准揭示了基于聚类的方法的强大性能。
单细胞技术为以单细胞分辨率描述细胞状态开辟了一条新途径,已成为研究人类疾病的重要工具。多路复用技术通过将多个样本组合在一起,实现了经济高效的实验,并有效地减轻了批次效应。首先,给每个样本一个独特的标签,然后将它们集中在一起进行文库制备和测序。测序结束后,根据标签检测结果对样本进行解复用,预计属于一个样本的细胞会比其他样本的细胞含有更多的相应标签。然而,在现实中,由于各种来源的噪音和污染,解复用并不简单。成功的解复用取决于能否有效去除这些污染。在这里,我们利用真实世界数据和模拟数据集,结合不同的归一化方法和去多路复用方法,进行了一次系统的基准测试。我们的研究表明,考虑测序深度的可变性能提高标记细胞与非标记细胞之间的可分离性,基于聚类的方法优于现有工具。基于聚类的工作流程可作为 R 软件包从 https://github.com/hwlim/hashDemux 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
期刊最新文献
Systematic analysis of the transcriptional landscape of melanoma reveals drug-target expression plasticity. Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities. Crosstalk between genomic variants and DNA methylation in FLT3 mutant acute myeloid leukemia. Beyond the hype: using AI, big data, wearable devices, and the internet of things for high-throughput livestock phenotyping. Environmental community transcriptomics: strategies and struggles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1