Tobias Guenther, Anna Coulibaly, Sonia Y Velásquez, Jutta Schulte, Tanja Fuderer, Timo Sturm, Bianka Hahn, Manfred Thiel, Holger A Lindner
{"title":"Transcriptional pathways of terminal differentiation in high- and low-density blood granulocytes in sepsis.","authors":"Tobias Guenther, Anna Coulibaly, Sonia Y Velásquez, Jutta Schulte, Tanja Fuderer, Timo Sturm, Bianka Hahn, Manfred Thiel, Holger A Lindner","doi":"10.1186/s12950-024-00414-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Trauma and infection induce emergency granulopoiesis. Counts of immature granulocytes and transcriptional pathways of terminal granulocytic differentiation in blood are elevated in sepsis but correlate with disease severity. This limits their performance as sepsis biomarkers in critically ill patients. We hypothesized that activation of these pathways in sepsis is attributable to immature low-density (LD) rather than mature high-density (HD) granulocytes.</p><p><strong>Methods: </strong>We included patients with sepsis and systemic inflammatory response syndrome (SIRS) of comparable disease severity, and additionally septic shock, on intensive or intermediate care unit admission. Blood granulocyte isolation by CD15 MicroBeads was followed by density-gradient centrifugation. Flow cytometry was used to determine counts of developmental stages (precursors) and their relative abundancies in total, HD, and LD granulocytes. Five degranulation markers were quantified in plasma by multiplex immunoassays. A set of 135 genes mapping granulocyte differentiation was assayed by QuantiGene™ Plex. CEACAM4, PLAC8, and CD63 were analyzed by qRT-PCR. Nonparametric statistical tests were applied.</p><p><strong>Results: </strong>Precursor counts appeared higher in sepsis than SIRS but did not correlate with disease severity for early immature and mature granulocytes. Precursor subpopulations were enriched at least ten-fold in LD over HD granulocytes without sepsis-SIRS differences. Degranulation markers in blood were comparable in sepsis and SIRS. Higher expression of early developmental genes in sepsis than SIRS was more pronounced in LD and less in HD than total granulocytes. Only the cell membrane protein encoding genes CXCR2 and CEACAM4 were more highly expressed in SIRS than sepsis. By qRT-PCR, the azurophilic granule genes CD63 and PLAC8 showed higher sepsis than SIRS levels in LD granulocytes and PLAC8 also in total granulocytes where its discriminatory performance resembled C-reactive protein (CRP).</p><p><strong>Conclusions: </strong>Transcriptional programs of early terminal granulocytic differentiation distinguish sepsis from SIRS due to both higher counts of immature granulocytes and elevated expression of early developmental genes in sepsis. The sustained expression of PLAC8 in mature granulocytes likely accounts for its selection in the whole blood SeptiCyte™ LAB test. Total granulocyte PLAC8 rivals CRP as sepsis biomarker. However, infection-specific transcriptional pathways, that differentiate sepsis from sterile stress-induced granulocytosis more reliably than CRP, remain to be identified.</p>","PeriodicalId":56120,"journal":{"name":"Journal of Inflammation-London","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492786/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12950-024-00414-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Trauma and infection induce emergency granulopoiesis. Counts of immature granulocytes and transcriptional pathways of terminal granulocytic differentiation in blood are elevated in sepsis but correlate with disease severity. This limits their performance as sepsis biomarkers in critically ill patients. We hypothesized that activation of these pathways in sepsis is attributable to immature low-density (LD) rather than mature high-density (HD) granulocytes.
Methods: We included patients with sepsis and systemic inflammatory response syndrome (SIRS) of comparable disease severity, and additionally septic shock, on intensive or intermediate care unit admission. Blood granulocyte isolation by CD15 MicroBeads was followed by density-gradient centrifugation. Flow cytometry was used to determine counts of developmental stages (precursors) and their relative abundancies in total, HD, and LD granulocytes. Five degranulation markers were quantified in plasma by multiplex immunoassays. A set of 135 genes mapping granulocyte differentiation was assayed by QuantiGene™ Plex. CEACAM4, PLAC8, and CD63 were analyzed by qRT-PCR. Nonparametric statistical tests were applied.
Results: Precursor counts appeared higher in sepsis than SIRS but did not correlate with disease severity for early immature and mature granulocytes. Precursor subpopulations were enriched at least ten-fold in LD over HD granulocytes without sepsis-SIRS differences. Degranulation markers in blood were comparable in sepsis and SIRS. Higher expression of early developmental genes in sepsis than SIRS was more pronounced in LD and less in HD than total granulocytes. Only the cell membrane protein encoding genes CXCR2 and CEACAM4 were more highly expressed in SIRS than sepsis. By qRT-PCR, the azurophilic granule genes CD63 and PLAC8 showed higher sepsis than SIRS levels in LD granulocytes and PLAC8 also in total granulocytes where its discriminatory performance resembled C-reactive protein (CRP).
Conclusions: Transcriptional programs of early terminal granulocytic differentiation distinguish sepsis from SIRS due to both higher counts of immature granulocytes and elevated expression of early developmental genes in sepsis. The sustained expression of PLAC8 in mature granulocytes likely accounts for its selection in the whole blood SeptiCyte™ LAB test. Total granulocyte PLAC8 rivals CRP as sepsis biomarker. However, infection-specific transcriptional pathways, that differentiate sepsis from sterile stress-induced granulocytosis more reliably than CRP, remain to be identified.
期刊介绍:
Journal of Inflammation welcomes research submissions on all aspects of inflammation.
The five classical symptoms of inflammation, namely redness (rubor), swelling (tumour), heat (calor), pain (dolor) and loss of function (functio laesa), are only part of the story. The term inflammation is taken to include the full range of underlying cellular and molecular mechanisms involved, not only in the production of the inflammatory responses but, more importantly in clinical terms, in the healing process as well. Thus the journal covers molecular, cellular, animal and clinical studies, and related aspects of pharmacology, such as anti-inflammatory drug development, trials and therapeutic developments. It also considers publication of negative findings.
Journal of Inflammation aims to become the leading online journal on inflammation and, as online journals replace printed ones over the next decade, the main open access inflammation journal. Open access guarantees a larger audience, and thus impact, than any restricted access equivalent, and increasingly so, as the escalating costs of printed journals puts them outside University budgets. The unrestricted access to research findings in inflammation aids in promoting dynamic and productive dialogue between industrial and academic members of the inflammation research community, which plays such an important part in the development of future generations of anti-inflammatory therapies.