{"title":"Recent advancement and human tissue applications of volume electron microscopy.","authors":"Makoto Abe, Nobuhiko Ohno","doi":"10.1093/jmicro/dfae047","DOIUrl":null,"url":null,"abstract":"<p><p>Structural observations are essential for the advancement of life science. Volume electron microscopy has recently realized remarkable progress in the three-dimensional analyses of biological specimens for elucidating complex ultrastructures in several fields of life science. The advancements in volume electron microscopy technologies have led to improvements, including higher resolution, more stability, and the ability to handle larger volumes. Although human applications of volume electron microscopy remain limited, the reported applications in various organs have already provided previously unrecognized features of human tissues and also novel insights of human diseases. Simultaneously, the application of volume electron microscopy to human studies faces challenges, including ethical and clinical hurdles, costs of data storage and analysis, and efficient and automated imaging methods for larger volume. Solutions including the use of residual clinical specimens and data analysis based on artificial intelligence would address those issues and establish the role of volume electron microscopy in human structural research. Future advancements in volume electron microscopy are anticipated to lead to transformative discoveries in basic research and clinical practice, deepening our understanding of human health and diseases for better diagnostic and therapeutic strategies.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfae047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Structural observations are essential for the advancement of life science. Volume electron microscopy has recently realized remarkable progress in the three-dimensional analyses of biological specimens for elucidating complex ultrastructures in several fields of life science. The advancements in volume electron microscopy technologies have led to improvements, including higher resolution, more stability, and the ability to handle larger volumes. Although human applications of volume electron microscopy remain limited, the reported applications in various organs have already provided previously unrecognized features of human tissues and also novel insights of human diseases. Simultaneously, the application of volume electron microscopy to human studies faces challenges, including ethical and clinical hurdles, costs of data storage and analysis, and efficient and automated imaging methods for larger volume. Solutions including the use of residual clinical specimens and data analysis based on artificial intelligence would address those issues and establish the role of volume electron microscopy in human structural research. Future advancements in volume electron microscopy are anticipated to lead to transformative discoveries in basic research and clinical practice, deepening our understanding of human health and diseases for better diagnostic and therapeutic strategies.