Amy-Louise Johnston , Edward Lester , Orla Williams , Rachel L. Gomes
{"title":"Interactions between antibiotic removal, water matrix characteristics and layered double hydroxide sorbent material","authors":"Amy-Louise Johnston , Edward Lester , Orla Williams , Rachel L. Gomes","doi":"10.1016/j.chemosphere.2024.143546","DOIUrl":null,"url":null,"abstract":"<div><div>Sorption by layered double hydroxides (LDH) is gaining substantial interest for remediating emerging contaminants, including pharmaceuticals from wastewaters. Findings from a sorbent material performing successfully in lab-based studies using non-environmental (laboratory-sourced) water cannot be assumed to translate to equal performance under environmental downstream applications. However, studies evaluating sorbent material performance for removal of pollutants and understanding material interactions with environmental waters are limited. This study evaluates the removal of the antibiotic amoxicillin (AMX) using a Mg<sub>2</sub>Al–NO<sub>3</sub>-LDH sorbent material from laboratory-grade water and wastewater effluent (WWE). AMX is successfully removed (94.53 ± 4.30 % within 24 h) in laboratory-grade water (under batch sorption conditions: 100 μg/L AMX, 0.2 g/L LDH, 20 °C). The comparison of LDH removal performance in laboratory grade and WWE shows a decreased maximum removal of AMX in WWE (13.39 ± 5.53 %). A lower final AMX concentration is observed in the WWE without the presence of LDH, compared to the ‘removal’ experiments in WWE with the presence of LDH, indicating a contribution of non-sorption removal pathways of AMX. This is proposed to be due to the difference in metal concentrations in the WWE with and without LDH present. The presence of LDH is found to decrease concentrations of metal pollutants in WWE, such as Zn concentration decreasing by 85 % over 24 h, changing water characteristics. Overall, this paper reports that an LDH performs differently in laboratory-sourced water and a wastewater effluent. This provides evidence that sorbent material performance needs to be evaluated in complex water matrices to ensure that it is representative of how a sorbent material will perform in an environmental application, which is the end goal of developing such technologies. Finally, good practice recommendations are provided for future lab-scale sorption experiments evaluating the performance of any new sorbent materials for water treatment applications.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524024469","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sorption by layered double hydroxides (LDH) is gaining substantial interest for remediating emerging contaminants, including pharmaceuticals from wastewaters. Findings from a sorbent material performing successfully in lab-based studies using non-environmental (laboratory-sourced) water cannot be assumed to translate to equal performance under environmental downstream applications. However, studies evaluating sorbent material performance for removal of pollutants and understanding material interactions with environmental waters are limited. This study evaluates the removal of the antibiotic amoxicillin (AMX) using a Mg2Al–NO3-LDH sorbent material from laboratory-grade water and wastewater effluent (WWE). AMX is successfully removed (94.53 ± 4.30 % within 24 h) in laboratory-grade water (under batch sorption conditions: 100 μg/L AMX, 0.2 g/L LDH, 20 °C). The comparison of LDH removal performance in laboratory grade and WWE shows a decreased maximum removal of AMX in WWE (13.39 ± 5.53 %). A lower final AMX concentration is observed in the WWE without the presence of LDH, compared to the ‘removal’ experiments in WWE with the presence of LDH, indicating a contribution of non-sorption removal pathways of AMX. This is proposed to be due to the difference in metal concentrations in the WWE with and without LDH present. The presence of LDH is found to decrease concentrations of metal pollutants in WWE, such as Zn concentration decreasing by 85 % over 24 h, changing water characteristics. Overall, this paper reports that an LDH performs differently in laboratory-sourced water and a wastewater effluent. This provides evidence that sorbent material performance needs to be evaluated in complex water matrices to ensure that it is representative of how a sorbent material will perform in an environmental application, which is the end goal of developing such technologies. Finally, good practice recommendations are provided for future lab-scale sorption experiments evaluating the performance of any new sorbent materials for water treatment applications.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.