It is highly anticipated that efforts will be made to raise the level of industrial effluent reclamation on the background of continuously minimizing waste stream based on preconcentration tool. For this purpose, a triple-doped nanocomposite (TFN-tri) membrane through partially alternative doping spiro-structured 2,2′-dimethyl-1,1′-biphenyl-4,4′-diamine dihydrochloride and flexible 4,4′-bipiperidyl dihydrochloride and continuous incorporating of molybdenum disulfide quantum dots was successfully fabricated. With the assistance of self-synthesized biodegradable flocculant pretreatment, raw hairwork dyeing effluent (HDE) was stably recycled up to 95.1% on the premise of meeting the requirements of the relevant national standard. As a deep processing unit, TFN-tri membrane displayed accurate salt rejection of nearly 66% as expected. More impressively, it also exhibited permeability basically increased by 2.5 folds, while fouling layer thickness, running time and specific energy consumption decreased by 5 μm, 54.7% and 72.5%, respectively, than its counterpart in long-term reuse testing. These changes may mainly be due to the finely expand sub-nanopores coupled with an enhanced electrostatic exclusion and the improved fouling resistance brought about by other critical skin features in terms of smoothness and hydrophilicity optimization. In brief, this study has taken a vigorous and reliable step towards heavily polluted HDE reclamation approaching zero liquid discharge.
{"title":"Performance improvement of triple-doped nanocomposite membrane towards hairwork dyeing effluent reclamation approaching zero liquid discharge","authors":"Yu Liu, Yuefei Song, Chunchun Meng, Zuqiong Jiang, Junhao Zhao, Yanan Wang, Kai Jiang","doi":"10.1016/j.chemosphere.2024.143725","DOIUrl":"10.1016/j.chemosphere.2024.143725","url":null,"abstract":"<div><div>It is highly anticipated that efforts will be made to raise the level of industrial effluent reclamation on the background of continuously minimizing waste stream based on preconcentration tool. For this purpose, a triple-doped nanocomposite (TFN-tri) membrane through partially alternative doping spiro-structured 2,2′-dimethyl-1,1′-biphenyl-4,4′-diamine dihydrochloride and flexible 4,4′-bipiperidyl dihydrochloride and continuous incorporating of molybdenum disulfide quantum dots was successfully fabricated. With the assistance of self-synthesized biodegradable flocculant pretreatment, raw hairwork dyeing effluent (HDE) was stably recycled up to 95.1% on the premise of meeting the requirements of the relevant national standard. As a deep processing unit, TFN-tri membrane displayed accurate salt rejection of nearly 66% as expected. More impressively, it also exhibited permeability basically increased by 2.5 folds, while fouling layer thickness, running time and specific energy consumption decreased by 5 μm, 54.7% and 72.5%, respectively, than its counterpart in long-term reuse testing. These changes may mainly be due to the finely expand sub-nanopores coupled with an enhanced electrostatic exclusion and the improved fouling resistance brought about by other critical skin features in terms of smoothness and hydrophilicity optimization. In brief, this study has taken a vigorous and reliable step towards heavily polluted HDE reclamation approaching zero liquid discharge.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143725"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143650
Kong Zhaoyu , Jun Ye , Ke Pei , Yong He, Binhua Wang, Shaoyi Huang, Qiying Cai, Yizhen Liu, Gang Ge, Lan Wu
Ammonium sulfate, as the primary leaching agent, has caused significant nitrogen pollution in rare earth elements (REEs) mining areas. Phytoremediation is a promising remediation method, relying on the synergistic relationships between plants and their root-associated microbiome. Nevertheless, harnessing the microbiome to accelerate nitrogen transformation and absorption by plants is challenging. Here, we investigated the composition, activities and culturable fraction of the root bacterial microbiome of the pioneer plant Miscanthus floridulus grown in a REEs tailing soil containing a high ammonia nitrogen (AN) concentration at 344.35 mg kg−1. Based on this, we constructed a simplified synthetic microbial community (SynCom) derived from the roots of M. floridulus, possessing nitrification and denitrification capabilities, to help REEs mine plants efficiently convert pollutant AN into nutrients, thereby enhancing plant growth and AN removal. This SynCom, consisting of 10 bacterial strains, included species of the genera Burkholderia (5) Paraburkholderia (1), Curtobacterium (1), Leifsonia (1) and Sinomonas (2). As a result, this SynCom alone achieved a significant reduction of 24.8% in AN content in tailing soil. When the SynCom inoculated with plants, the reduction in AN was even more significant (32.6%), surpassing the reduction achieved solely by plants (25.5%). Moreover, live SynCom inoculation significantly increased shoot and root biomass by 39.8% and 49.7%, respectively, compared to dead SynCom inoculation. These results indicate that the reduction in AN can be attributed to the SynCom's nitrification and denitrification capabilities, as well as its ability to enhance plant nitrogen absorption by stimulating their growth. Notably, seven nitrifying and denitrifying strains of the SynCom are particularly enriched, suggesting that plant roots selectively recruit nitrogen cycle-related bacteria to accelerate nitrogen transformation and absorption. These results provide a practical solution for harnessing the synergistic relationships between plants and their root microbiome in environmental remediation efforts.
{"title":"A synthetic bacterial community engineered from Miscanthus floridulus roots enhances ammonia nitrogen removal in ionic rare earth mine tailings","authors":"Kong Zhaoyu , Jun Ye , Ke Pei , Yong He, Binhua Wang, Shaoyi Huang, Qiying Cai, Yizhen Liu, Gang Ge, Lan Wu","doi":"10.1016/j.chemosphere.2024.143650","DOIUrl":"10.1016/j.chemosphere.2024.143650","url":null,"abstract":"<div><div>Ammonium sulfate, as the primary leaching agent, has caused significant nitrogen pollution in rare earth elements (REEs) mining areas. Phytoremediation is a promising remediation method, relying on the synergistic relationships between plants and their root-associated microbiome. Nevertheless, harnessing the microbiome to accelerate nitrogen transformation and absorption by plants is challenging. Here, we investigated the composition, activities and culturable fraction of the root bacterial microbiome of the pioneer plant <em>Miscanthus floridulus</em> grown in a REEs tailing soil containing a high ammonia nitrogen (AN) concentration at 344.35 mg kg<sup>−1</sup>. Based on this, we constructed a simplified synthetic microbial community (SynCom) derived from the roots of <em>M</em>. <em>floridulus</em>, possessing nitrification and denitrification capabilities, to help REEs mine plants efficiently convert pollutant AN into nutrients, thereby enhancing plant growth and AN removal. This SynCom, consisting of 10 bacterial strains, included species of the genera <em>Burkholderia</em> (5) <em>Paraburkholderia</em> (1), <em>Curtobacterium</em> (1), <em>Leifsonia</em> (1) and <em>Sinomonas</em> (2). As a result, this SynCom alone achieved a significant reduction of 24.8% in AN content in tailing soil. When the SynCom inoculated with plants, the reduction in AN was even more significant (32.6%), surpassing the reduction achieved solely by plants (25.5%). Moreover, live SynCom inoculation significantly increased shoot and root biomass by 39.8% and 49.7%, respectively, compared to dead SynCom inoculation. These results indicate that the reduction in AN can be attributed to the SynCom's nitrification and denitrification capabilities, as well as its ability to enhance plant nitrogen absorption by stimulating their growth. Notably, seven nitrifying and denitrifying strains of the SynCom are particularly enriched, suggesting that plant roots selectively recruit nitrogen cycle-related bacteria to accelerate nitrogen transformation and absorption. These results provide a practical solution for harnessing the synergistic relationships between plants and their root microbiome in environmental remediation efforts.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143650"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143641
Agnieszka Babczyńska , Monika Tarnawska , Klaudia Czaja , Barbara Flasz , Amrendra K. Ajay , Łukasz Napora-Rutkowski , Katarzyna Rozpędek , Ewa Świerczek , Andrzej Kędziorski , Maria Augustyniak
Graphene oxide nanoparticles (GO) (have promising properties for, electronics, energy, medicine, water purification, agriculture and food production industry. However, their potentially hazardous effects are still not satisfactorily recognized, so they are often included in the group of contaminants of emerging concern. Therefore, the aim of this investigation was to assess the potentially harmful effects of orally administered GO on the digestive enzyme activities of the house crickets Acheta domesticus. The activity of digestive enzymes was measured using the API®ZYM test and the results were compared in relation to the insect age group (Larvae, Adult Young and Adult Mature) and previous selection towards longevity (‘long living’ vs ‘wild’ strains). General analysis, encompassing all digestive enzymes simultaneously, as well as an analysis performed for individual enzyme subgroups, revealed that both factors and their interactions significantly modified the activity of digestive enzymes of A. domesticus. The most pronounced effect was connected with the age factor. The study revealed that the Adult Young age group was the most sensitive; in this group, the activity of digestive enzymes was, in general, decreased in comparison with the control group, while the remaining group did not respond to GO with a similar intensity. In turn, the inter-strain comparisons demonstrated different response patterns to the GO. The control enzymatic activity of the insects from long living’ strain was, in general, higher than in the ‘wild strain’; however, it was significantly decreased in the GO-exposed groups, while in the ‘wild’ strain, the activity remained relatively homogenous. Additionally, the tendency was more pronounced in Adult Young than in the remaining age groups. The potential toxicity of GO requires further investigation, mainly with a focus on the composition and functioning of gut microbiotas.
氧化石墨烯纳米粒子(GO)在电子、能源、医药、水净化、农业和食品生产等领域具有广阔的应用前景。然而,其潜在的有害影响仍未得到令人满意的认识,因此经常被列入新出现的污染物类别。因此,本研究旨在评估口服 GO 对家养蟋蟀(Acheta domesticus)消化酶活性的潜在有害影响。使用 API®ZYM 试验测量了消化酶的活性,并将结果与昆虫年龄组(幼虫、幼年成虫和成年成虫)和以前的长寿选择("长寿 "品系与 "野生 "品系)进行了比较。同时对所有消化酶进行的总体分析以及对单个酶亚群进行的分析表明,这两个因素及其相互作用显著地改变了家蝇消化酶的活性。最明显的影响与年龄因素有关。研究表明,成年幼年组最为敏感;与对照组相比,该组消化酶的活性普遍下降,而其余组对 GO 的反应强度则不尽相同。反过来,菌株间的比较也显示出对 GO 的不同反应模式。一般来说,"长寿昆虫 "菌株的对照酶活性高于 "野生菌株";然而,暴露于 GO 的菌株组的酶活性明显降低,而 "野生 "菌株的酶活性则保持相对稳定。此外,与其他年龄组相比,这种趋势在成年幼鼠中更为明显。GO 的潜在毒性需要进一步研究,主要侧重于肠道微生物群的组成和功能。
{"title":"Adult young as the fragile ontogenetic stage of the house crickets dietary exposed to GO nanoparticles – digestive enzymes perspective","authors":"Agnieszka Babczyńska , Monika Tarnawska , Klaudia Czaja , Barbara Flasz , Amrendra K. Ajay , Łukasz Napora-Rutkowski , Katarzyna Rozpędek , Ewa Świerczek , Andrzej Kędziorski , Maria Augustyniak","doi":"10.1016/j.chemosphere.2024.143641","DOIUrl":"10.1016/j.chemosphere.2024.143641","url":null,"abstract":"<div><div>Graphene oxide nanoparticles (GO) (have promising properties for, electronics, energy, medicine, water purification, agriculture and food production industry. However, their potentially hazardous effects are still not satisfactorily recognized, so they are often included in the group of contaminants of emerging concern. Therefore, the aim of this investigation was to assess the potentially harmful effects of orally administered GO on the digestive enzyme activities of the house crickets <em>Acheta domesticus</em>. The activity of digestive enzymes was measured using the API®ZYM test and the results were compared in relation to the insect age group (Larvae, Adult Young and Adult Mature) and previous selection towards longevity (‘long living’ <em>vs</em> ‘wild’ strains). General analysis, encompassing all digestive enzymes simultaneously, as well as an analysis performed for individual enzyme subgroups, revealed that both factors and their interactions significantly modified the activity of digestive enzymes of <em>A. domesticus</em>. The most pronounced effect was connected with the age factor. The study revealed that the Adult Young age group was the most sensitive; in this group, the activity of digestive enzymes was, in general, decreased in comparison with the control group, while the remaining group did not respond to GO with a similar intensity. In turn, the inter-strain comparisons demonstrated different response patterns to the GO. The control enzymatic activity of the insects from long living’ strain was, in general, higher than in the ‘wild strain’; however, it was significantly decreased in the GO-exposed groups, while in the ‘wild’ strain, the activity remained relatively homogenous. Additionally, the tendency was more pronounced in Adult Young than in the remaining age groups. The potential toxicity of GO requires further investigation, mainly with a focus on the composition and functioning of gut microbiotas.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143641"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143668
Ilham Zulfahmi , Said Ali Akbar , Nazwa Amaranggi , Rima Yusfarizal , Ulfa Natasya , Badratun Nafis , Silma Rahma Atiqah , Arief Rahman , Husnawati Yahya , Kizar Ahmed Sumon , Mohammad Mahmudur Rahman
Phytoremediation is a promising technology for treating Palm Oil Mill Effluent (POME). Moreover, phytoremediators have the potential for various aplication, including as feedstock. Hence, this study aims to elucidate the ability of sea grapes (Caulerpa racemosa) in remediating POME and evaluate their suitability as ornamental fish feed. Results showed that application of sea grapes effectively decreased the COD, TSS, phosphate (PO43−), and nitrate (NO3−) levels in POME. Sea grapes maintained in POME with a concentration of 12.5% had the highest reduction rate and growth performance. Moreover, sea grapes biomass from the remediation process can be utilized as feed material for ornamental fish, as indicated by increasing skin coloration of fish. For the first time, this study provides sustainable options for managing POME using sea grapes and suggests sea grapes as a potential fish feed formulation for ornamental fish.
{"title":"Dual function of sea grapes (Caulerpa racemosa) as phytoremediator for palm oil mill effluent and as ornamental fish feed formulation","authors":"Ilham Zulfahmi , Said Ali Akbar , Nazwa Amaranggi , Rima Yusfarizal , Ulfa Natasya , Badratun Nafis , Silma Rahma Atiqah , Arief Rahman , Husnawati Yahya , Kizar Ahmed Sumon , Mohammad Mahmudur Rahman","doi":"10.1016/j.chemosphere.2024.143668","DOIUrl":"10.1016/j.chemosphere.2024.143668","url":null,"abstract":"<div><div>Phytoremediation is a promising technology for treating Palm Oil Mill Effluent (POME). Moreover, phytoremediators have the potential for various aplication, including as feedstock. Hence, this study aims to elucidate the ability of sea grapes (<em>Caulerpa racemosa</em>) in remediating POME and evaluate their suitability as ornamental fish feed. Results showed that application of sea grapes effectively decreased the COD, TSS, phosphate (PO<sub>4</sub><sup>3−</sup>), and nitrate (NO<sub>3</sub><sup>−</sup>) levels in POME. Sea grapes maintained in POME with a concentration of 12.5% had the highest reduction rate and growth performance. Moreover, sea grapes biomass from the remediation process can be utilized as feed material for ornamental fish, as indicated by increasing skin coloration of fish. For the first time, this study provides sustainable options for managing POME using sea grapes and suggests sea grapes as a potential fish feed formulation for ornamental fish.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143668"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extracellular polymeric substances (EPS), which envelop on fungal hyphae surface, interact strongly with minerals and play a crucial role in the formation of nanoscale minerals during biomineralization in nature environments. However, it remains poorly understood about the molecular mechanisms of nanominerals (i.e., iron nanominerals) formation in fungal EPS halos during fungus-mineral interactions. This process is vital because fungi typically grow attached to various mineral surfaces in nature. According to the changes of thickness of the fungal cell and EPS layers during the Trichoderma guizhouense NJAU 4742 and hematite cultivation experiments, we found that fungal biomineralization could trigger the formation of EPS layers. Fe-dominated nanominerals, aromatic C (283-286.1 eV), alkyl C (287.6-288.3 eV), and carboxylic C (288.4-289.1 eV) were the dominant chemical groups on the EPS layers, as determined by nanoscale secondary ion mass spectrometry (NanoSIMS), high-resolution transmission electron microscope (HRTEM), and carbon 1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Further, evidence from Fe K-edge X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) spectra indicated that oxygen vacancy (OV) was formed on the Fe-dominated nanomineral surface during fungus-mineral interactions, which played an important role in catalyzing H2O2 decomposition and HO∗ production. Taken together, the intrinsic peroxidase-like activity by reactive oxygen species (ROS) could modulate the Fe-dominated nanominerals formation in EPS layers to newly form a physical barrier between the cell and the external environments around hyphae, providing novel insights into the effects of ROS-mediated fungal-mineral interactions on fungal nutrient recycling, attenuation of contaminants, and biological control in nature environments.
包裹在真菌菌丝表面的胞外高分子物质(EPS)与矿物质有强烈的相互作用,在自然环境中的生物矿化过程中对纳米级矿物质的形成起着至关重要的作用。然而,人们对真菌与矿物相互作用过程中真菌 EPS 光晕形成纳米矿物(即纳米铁矿物)的分子机制仍然知之甚少。这一过程至关重要,因为在自然界中,真菌通常会附着在各种矿物表面生长。根据本研究中贵州毛霉 NJAU 4742 和赤铁矿培养实验中真菌细胞层和 EPS 层厚度的变化,我们发现真菌生物矿化可引发 EPS 层的形成。通过纳米尺度二次离子质谱(NanoSIMS)、高分辨率透射电子显微镜(HRTEM)和碳1s近缘X射线吸收精细结构(NEXAFS)光谱测定,EPS层上的主要化学基团是以铁为主的纳米矿物、芳香族C(283-286.1 eV)、烷基C(287.6-288.3 eV)和羧基C(288.4-289.1 eV)。此外,来自铁 K 边 X 射线吸收近边结构(XANES)和 X 射线光电子能谱(XPS)光谱的证据表明,在真菌与矿物相互作用的过程中,以铁为主的纳米矿物表面形成了氧空位(OV),在催化 H2O2 分解和 HO* 生成方面发挥了重要作用。综上所述,活性氧(ROS)固有的过氧化物酶样活性可调节 EPS 层中以铁为主的纳米矿物的形成,在菌丝周围新形成细胞与外部环境之间的物理屏障,为研究 ROS 介导的真菌与矿物相互作用对自然环境中真菌营养循环、污染物衰减和生物控制的影响提供了新的见解。
{"title":"Molecular mechanisms of iron nanominerals formation in fungal extracellular polymeric substances (EPS) layers during fungus-mineral interactions","authors":"Jian Xiao , ZhiLai Chi , XiaoDan Huang , GuangHui Yu","doi":"10.1016/j.chemosphere.2024.143660","DOIUrl":"10.1016/j.chemosphere.2024.143660","url":null,"abstract":"<div><div>Extracellular polymeric substances (EPS), which envelop on fungal hyphae surface, interact strongly with minerals and play a crucial role in the formation of nanoscale minerals during biomineralization in nature environments. However, it remains poorly understood about the molecular mechanisms of nanominerals (i.e., iron nanominerals) formation in fungal EPS halos during fungus-mineral interactions. This process is vital because fungi typically grow attached to various mineral surfaces in nature. According to the changes of thickness of the fungal cell and EPS layers during the <em>Trichoderma guizhouense</em> NJAU 4742 and hematite cultivation experiments, we found that fungal biomineralization could trigger the formation of EPS layers. Fe-dominated nanominerals, aromatic C (283-286.1 eV), alkyl C (287.6-288.3 eV), and carboxylic C (288.4-289.1 eV) were the dominant chemical groups on the EPS layers, as determined by nanoscale secondary ion mass spectrometry (NanoSIMS), high-resolution transmission electron microscope (HRTEM), and carbon 1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Further, evidence from Fe K-edge X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) spectra indicated that oxygen vacancy (O<sub>V</sub>) was formed on the Fe-dominated nanomineral surface during fungus-mineral interactions, which played an important role in catalyzing H<sub>2</sub>O<sub>2</sub> decomposition and HO∗ production. Taken together, the intrinsic peroxidase-like activity by reactive oxygen species (ROS) could modulate the Fe-dominated nanominerals formation in EPS layers to newly form a physical barrier between the cell and the external environments around hyphae, providing novel insights into the effects of ROS-mediated fungal-mineral interactions on fungal nutrient recycling, attenuation of contaminants, and biological control in nature environments.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143660"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Groundwater contamination with heavy metals is a critical environmental issue, especially in regions heavily reliant on groundwater for drinking purpose. These metals can seep into groundwater from soil and rock weathering or through improper disposal of industrial waste and effluents. Access to safe drinking water is essential for maintaining public health. This study aimed to assess heavy metal contamination in groundwater and its implications for dental and public health. The objective of the study was to measure the concentration of the heavy metals in the dentine of extracted tooth of the study population. The study concurrently measured heavy metal concentrations in groundwater and tooth dentine samples, analyzing demographic profiles, heavy metal correlations, and underlying structures using Principal Component Analysis (PCA). The average level of heavy metals in the groundwater samples varied from 9.763 ± 3.362 μg/L for Cd to 3426.204 ± 875.264 μg/L for Fe. The mean concentrations (μg/g) in teeth dentine showed significant variations, with iron (Fe) ranging from 0.149 ± 0.03 μg/g in water purifiers to 4.62 ± 0.578 μg/g in local water sources. Similar variations were observed for other heavy metals across different water sources. Principal component analysis (PCA) revealed seven principal components, with the first two components explaining 96.1% of the total variance. The findings revealed varied concentrations of heavy metals across all water sources. Statistical analyses underscored the complex relationship between water sources and heavy metal contamination levels, highlighting the need for targeted interventions to improve water quality and mitigate health risks. The study highlights the urgent need for monitoring and mitigation efforts to ensure safe drinking water and mitigate health risks associated with heavy metal contamination.
{"title":"Assessment of heavy metal contamination in groundwater and its implications for dental and public health","authors":"Bushra Ahmed Karim , Gauhar Mahmood , Mukesh Hasija , Babita Meena , Salim Sheikh","doi":"10.1016/j.chemosphere.2024.143609","DOIUrl":"10.1016/j.chemosphere.2024.143609","url":null,"abstract":"<div><div>Groundwater contamination with heavy metals is a critical environmental issue, especially in regions heavily reliant on groundwater for drinking purpose. These metals can seep into groundwater from soil and rock weathering or through improper disposal of industrial waste and effluents. Access to safe drinking water is essential for maintaining public health. This study aimed to assess heavy metal contamination in groundwater and its implications for dental and public health. The objective of the study was to measure the concentration of the heavy metals in the dentine of extracted tooth of the study population. The study concurrently measured heavy metal concentrations in groundwater and tooth dentine samples, analyzing demographic profiles, heavy metal correlations, and underlying structures using Principal Component Analysis (PCA). The average level of heavy metals in the groundwater samples varied from 9.763 ± 3.362 μg/L for Cd to 3426.204 ± 875.264 μg/L for Fe. The mean concentrations (μg/g) in teeth dentine showed significant variations, with iron (Fe) ranging from 0.149 ± 0.03 μg/g in water purifiers to 4.62 ± 0.578 μg/g in local water sources. Similar variations were observed for other heavy metals across different water sources. Principal component analysis (PCA) revealed seven principal components, with the first two components explaining 96.1% of the total variance. The findings revealed varied concentrations of heavy metals across all water sources. Statistical analyses underscored the complex relationship between water sources and heavy metal contamination levels, highlighting the need for targeted interventions to improve water quality and mitigate health risks. The study highlights the urgent need for monitoring and mitigation efforts to ensure safe drinking water and mitigate health risks associated with heavy metal contamination.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143609"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143559
C. Maggetti , D. Pinelli , E. Girometti , E. Papa , V. Medri , E. Landi , F. Avolio , D. Frascari
Ion exchange represents a promising process for ammonium removal from municipal wastewater (MWW), in order to recover it for fertilizer production. Previous studies on ammonium ion exchange neglected the assessment of process robustness and the optimization the desorption/recovery step. This study aimed at developing a continuous-flow process of ammonium removal/recovery based on a metakaolin K-based geopolymer, named G13. Process robustness was assessed by operating 7 adsorption/desorption cycles with two types of MWW. These tests resulted in satisfactory and constant performances: operating capacity at 40 mgN L−1 in the inlet = 12 mgN gdry sorbent−1, bed volumes of treated MWW at the selected breakpoint = 199–226, ammonium adsorption yield = 88–91%. Empty bed contact time (EBCT) was decreased from 10 to 5 min without any reduction in performances. The NH4+ adsorption process was effectively simulated by the Thomas model, allowing a model-based assessment of the effect of EBCT reductions on process performances. An innovative desorption procedure led to high ammonium recovery yields (86–100%) and to a desorbed product composed primarily of KNO3 (54%w) and NH4NO3 (39%w), two salts largely used in commercial fertilizers. The energy consumption of ammonium removal/recovery with G13 resulted 0.027 kWh m−3treated WW, with a relevant reduction in comparison to traditional nitrification/denitrification, whereas the operational cost resulted equal to 60–110% of the cost of the benchmark process. These results show that G13 is a promising material to recover ammonium in a circular economy approach.
{"title":"Development of an ion exchange process for ammonium removal and recovery from municipal wastewater using a metakaolin K-based geopolymer","authors":"C. Maggetti , D. Pinelli , E. Girometti , E. Papa , V. Medri , E. Landi , F. Avolio , D. Frascari","doi":"10.1016/j.chemosphere.2024.143559","DOIUrl":"10.1016/j.chemosphere.2024.143559","url":null,"abstract":"<div><div>Ion exchange represents a promising process for ammonium removal from municipal wastewater (MWW), in order to recover it for fertilizer production. Previous studies on ammonium ion exchange neglected the assessment of process robustness and the optimization the desorption/recovery step. This study aimed at developing a continuous-flow process of ammonium removal/recovery based on a metakaolin K-based geopolymer, named G13. Process robustness was assessed by operating 7 adsorption/desorption cycles with two types of MWW. These tests resulted in satisfactory and constant performances: operating capacity at 40 mg<sub>N</sub> L<sup>−1</sup> in the inlet = 12 mg<sub>N</sub> g<sub>dry sorbent</sub><sup>−1</sup>, bed volumes of treated MWW at the selected breakpoint = 199–226, ammonium adsorption yield = 88–91%. Empty bed contact time (EBCT) was decreased from 10 to 5 min without any reduction in performances. The NH<sub>4</sub><sup>+</sup> adsorption process was effectively simulated by the Thomas model, allowing a model-based assessment of the effect of EBCT reductions on process performances. An innovative desorption procedure led to high ammonium recovery yields (86–100%) and to a desorbed product composed primarily of KNO<sub>3</sub> (54%<sub>w</sub>) and NH<sub>4</sub>NO<sub>3</sub> (39%<sub>w</sub>), two salts largely used in commercial fertilizers. The energy consumption of ammonium removal/recovery with G13 resulted 0.027 kWh m<sup>−3</sup><sub>treated WW</sub>, with a relevant reduction in comparison to traditional nitrification/denitrification, whereas the operational cost resulted equal to 60–110% of the cost of the benchmark process. These results show that G13 is a promising material to recover ammonium in a circular economy approach.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143559"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143611
Isabell Schönrath , Christoph Schmidtkunz , Katja Küpper , Till Weber , Gabriele Leng , Marike Kolossa-Gehring
The fungicide climbazole is mainly used as an anti-dandruff (AD) agent in cosmetics, such as shampoos or other hair care products. Consequently, an exposure of the general population seems likely because many people suffer from dandruff. We have analyzed urine samples from the German Environmental Specimen Bank (ESB) for two specific climbazole biomarkers, namely (OH)2-climbazole and cx–OH–climbazole, in samples collected in the years 2002, 2007, 2012, 2017 and 2022. (OH)2-Climbazole was determined diastereoselectively, hence three analytes are discussed ((OH)2-climbazole 1, (OH)2-climbazole 2 and cx–OH–climbazole). The study population consisted of 300 students (150 male, 150 female) aged between 20 and 29 at the time of sampling from Halle/Saale in Germany. Most samples under scrutiny did not contain any climbazole metabolites in levels above the limit of quantification (LOQ, 0.5 μg/L for either analyte), only in 16 samples at least one analyte could be quantitated. Even the sample with the highest metabolite concentrations (10.23 μg/L (OH)2-climbazole and 2.53 μg/L cx–OH–climbazole) barely reached the urinary concentrations found in an excretion kinetics study after the typical application of a climbazole-containing shampoo in three volunteers. As a result, estimated daily intakes (max. 1.8 μg/kg bw/d) lay below the subchronic NOAEL (15 mg/kg bw/d) and NOEL (5 mg/kg bw/d) by a factor of more than 8300 and 2700, respectively. The evaluation of the climbazole burden of the general population gives valuable insights for the authorities on the effect of legal restrictions.
{"title":"Exposure of young German adults to the anti-dandruff agent climbazole from 2002 to 2022: Analysis of specific biomarkers in urinary samples","authors":"Isabell Schönrath , Christoph Schmidtkunz , Katja Küpper , Till Weber , Gabriele Leng , Marike Kolossa-Gehring","doi":"10.1016/j.chemosphere.2024.143611","DOIUrl":"10.1016/j.chemosphere.2024.143611","url":null,"abstract":"<div><div>The fungicide climbazole is mainly used as an anti-dandruff (AD) agent in cosmetics, such as shampoos or other hair care products. Consequently, an exposure of the general population seems likely because many people suffer from dandruff. We have analyzed urine samples from the German Environmental Specimen Bank (ESB) for two specific climbazole biomarkers, namely (OH)<sub>2</sub>-climbazole and cx–OH–climbazole, in samples collected in the years 2002, 2007, 2012, 2017 and 2022. (OH)<sub>2</sub>-Climbazole was determined diastereoselectively, hence three analytes are discussed ((OH)<sub>2</sub>-climbazole 1, (OH)<sub>2</sub>-climbazole 2 and cx–OH–climbazole). The study population consisted of 300 students (150 male, 150 female) aged between 20 and 29 at the time of sampling from Halle/Saale in Germany. Most samples under scrutiny did not contain any climbazole metabolites in levels above the limit of quantification (LOQ, 0.5 μg/L for either analyte), only in 16 samples at least one analyte could be quantitated. Even the sample with the highest metabolite concentrations (10.23 μg/L (OH)<sub>2</sub>-climbazole and 2.53 μg/L cx–OH–climbazole) barely reached the urinary concentrations found in an excretion kinetics study after the typical application of a climbazole-containing shampoo in three volunteers. As a result, estimated daily intakes (max. 1.8 μg/kg bw/d) lay below the subchronic NOAEL (15 mg/kg bw/d) and NOEL (5 mg/kg bw/d) by a factor of more than 8300 and 2700, respectively. The evaluation of the climbazole burden of the general population gives valuable insights for the authorities on the effect of legal restrictions.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143611"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143622
Haonan Shen , Qian Zhang , Meng Li , Xibei Tan , Xiaoqian Dong , Hongyu Wang
The anaerobic ammonia oxidation (anammox) process is a pivotal nitrogen removal technique, playing a significant role in the field of wastewater treatment. The paper commences by delineating the merits of the anammox process in comparison to conventional nitrification-denitrification techniques. Subsequently, it delves into the characteristics of different sludge morphologies process of the behavior of anammox bacteria and their reactions to environmental factors. Revising the issues associated with managing urban sewage in mainstream areas., it discusses the issues faced by the anammox process under reduced nitrogen loads, such as restricted activity due to decreased the levels of ammonia nitrogen and nitrite concentrations, as well as the impact of environmental factors like low temperature, organic matter, and sulfur ions. Following this, a comprehensive review of various types of coupled anammox processes is provided, highlighting the advantages and characteristics of partial nitrification (PN), partial denitrification (PD), methane-dependent nitrite/nitrate reduction (DAMO), sulfur-driven autotrophic denitrification (SAD), iron ammonia oxidation (feammox) and algae photoautotrophy coupling techniques, emphasizing their significance in system stability and resource utilization efficiency. Future research directions include exploring the applicability of the anammox process under various temperature conditions and addressing NO3−-N issues in effluent. The findings from these studies will offer valuable insights for further enhancing the optimization of the anammox process in mainstream urban wastewater treatment.
{"title":"Research on intensive nitrogen removal of municipal sewage by mainstream anaerobic ammonia oxidation process","authors":"Haonan Shen , Qian Zhang , Meng Li , Xibei Tan , Xiaoqian Dong , Hongyu Wang","doi":"10.1016/j.chemosphere.2024.143622","DOIUrl":"10.1016/j.chemosphere.2024.143622","url":null,"abstract":"<div><div>The anaerobic ammonia oxidation (anammox) process is a pivotal nitrogen removal technique, playing a significant role in the field of wastewater treatment. The paper commences by delineating the merits of the anammox process in comparison to conventional nitrification-denitrification techniques. Subsequently, it delves into the characteristics of different sludge morphologies process of the behavior of anammox bacteria and their reactions to environmental factors. Revising the issues associated with managing urban sewage in mainstream areas., it discusses the issues faced by the anammox process under reduced nitrogen loads, such as restricted activity due to decreased the levels of ammonia nitrogen and nitrite concentrations, as well as the impact of environmental factors like low temperature, organic matter, and sulfur ions. Following this, a comprehensive review of various types of coupled anammox processes is provided, highlighting the advantages and characteristics of partial nitrification (PN), partial denitrification (PD), methane-dependent nitrite/nitrate reduction (DAMO), sulfur-driven autotrophic denitrification (SAD), iron ammonia oxidation (feammox) and algae photoautotrophy coupling techniques, emphasizing their significance in system stability and resource utilization efficiency. Future research directions include exploring the applicability of the anammox process under various temperature conditions and addressing NO<sub>3</sub><sup>−</sup>-N issues in effluent. The findings from these studies will offer valuable insights for further enhancing the optimization of the anammox process in mainstream urban wastewater treatment.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143622"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143460
Sebastian Kuehr , Boris Meisterjahn , Nicola Schroeder , Christian Schlechtriem , Kuria Ndungu , Anastasia Georgantzopoulou
The extraction of nanoparticles (NPs) from complex matrices and subsequent storage can potentially alter the NPs physicochemical properties and hinder cross-study comparisons. Most NPs extraction methods are designed and tested at high NPs concentrations, although (eco)toxicological and regulatory monitoring programs require methods capable of analyzing NPs at environmentally relevant concentrations (lower ppb range). In this study, we investigated how extraction methods affect the characteristics of PVP coated and citrate-stabilized silver NPs (AgNPs) spiked into soil, sewage sludge, and biological samples at environmentally relevant concentrations using Single Particle Inductively Coupled Plasma Mass Spectrometry spICP-MS). Further we investigated the impact of storage temperature (-80 °C – 21 °C) and storage duration (1–28 days) on the particle characteristics such as particle size.
We found that aqueous AgNPs samples with low ionic strength media retained their original characteristics (like particle size, particle concentration and particle-based Ag mass) when preserved at 4 °C for up to 28 days. AgNPs dispersed in high ionic strength media were however better preserved at −80 °C. Among the extraction agents, tetrasodium pyrophosphate was efficient in extracting AgNPs from soil and sewage sludge matrices, while Proteinase K was most suitable for biological samples from organisms (earthworms or fish).
Although our study focused only on AgNPs, it provides crucial information to aid interlaboratory comparisons and data interpretation for (eco)toxicological studies.
{"title":"Evaluation of extraction and storage conditions for quantification and characterization of silver nanoparticles in complex samples by single particle-ICP-MS","authors":"Sebastian Kuehr , Boris Meisterjahn , Nicola Schroeder , Christian Schlechtriem , Kuria Ndungu , Anastasia Georgantzopoulou","doi":"10.1016/j.chemosphere.2024.143460","DOIUrl":"10.1016/j.chemosphere.2024.143460","url":null,"abstract":"<div><div>The extraction of nanoparticles (NPs) from complex matrices and subsequent storage can potentially alter the NPs physicochemical properties and hinder cross-study comparisons. Most NPs extraction methods are designed and tested at high NPs concentrations, although (eco)toxicological and regulatory monitoring programs require methods capable of analyzing NPs at environmentally relevant concentrations (lower ppb range). In this study, we investigated how extraction methods affect the characteristics of PVP coated and citrate-stabilized silver NPs (AgNPs) spiked into soil, sewage sludge, and biological samples at environmentally relevant concentrations using Single Particle Inductively Coupled Plasma Mass Spectrometry spICP-MS). Further we investigated the impact of storage temperature (-80 °C – 21 °C) and storage duration (1–28 days) on the particle characteristics such as particle size.</div><div>We found that aqueous AgNPs samples with low ionic strength media retained their original characteristics (like particle size, particle concentration and particle-based Ag mass) when preserved at 4 °C for up to 28 days. AgNPs dispersed in high ionic strength media were however better preserved at −80 °C. Among the extraction agents, tetrasodium pyrophosphate was efficient in extracting AgNPs from soil and sewage sludge matrices, while Proteinase K was most suitable for biological samples from organisms (earthworms or fish).</div><div>Although our study focused only on AgNPs, it provides crucial information to aid interlaboratory comparisons and data interpretation for (eco)toxicological studies.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143460"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}