Investigating the synergistic neuromodulation effect of bilateral rTMS and VR brain-computer interfaces training in chronic stroke patients.

Monica Afonso, Francisco Sánchez-Cuesta, Yeray González-Zamorano, Juan Pablo Romero, Athanasios Vourvopoulos
{"title":"Investigating the synergistic neuromodulation effect of bilateral rTMS and VR brain-computer interfaces training in chronic stroke patients.","authors":"Monica Afonso, Francisco Sánchez-Cuesta, Yeray González-Zamorano, Juan Pablo Romero, Athanasios Vourvopoulos","doi":"10.1088/1741-2552/ad8836","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Stroke is a major cause of adult disability worldwide, resulting in motor impairments. To regain motor function, patients undergo rehabilitation, typically involving repetitive movement training. For those who lack volitional movement, novel technology-based approaches have emerged that directly involve the central nervous system, through neuromodulation techniques such as transcranial magnetic stimulation (TMS), and closed-loop neurofeedback like brain-computer interfaces (BCIs). This, can be augmented through proprioceptive feedback delivered many times by embodied virtual reality (VR). Nonetheless, despite a growing body of research demonstrating the individual efficacy of each technique, there is limited information on their combined effects.<i>Approach.</i>In this study, we analyzed the Electroencephalographic (EEG) signals acquired from 10 patients with more than 4 months since stroke during a longitudinal intervention with repetitive TMS followed by VR-BCI training. From the EEG, the event related desynchronization (ERD) and individual alpha frequency (IAF) were extracted, evaluated over time and correlated with clinical outcome.<i>Main results.</i>Every patient's clinical outcome improved after treatment, and ERD magnitude increased during simultaneous rTMS and VR-BCI. Additionally, IAF values showed a significant correlation with clinical outcome, nonetheless, no relationship was found between differences in ERD pre- post- intervention with the clinical improvement.<i>Significance.</i>This study furnishes empirical evidence supporting the efficacy of the joint action of rTMS and VR-BCI in enhancing patient recovery. It also suggests a relationship between IAF and rehabilitation outcomes, that could potentially serve as a retrievable biomarker for stroke recovery.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad8836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Stroke is a major cause of adult disability worldwide, resulting in motor impairments. To regain motor function, patients undergo rehabilitation, typically involving repetitive movement training. For those who lack volitional movement, novel technology-based approaches have emerged that directly involve the central nervous system, through neuromodulation techniques such as transcranial magnetic stimulation (TMS), and closed-loop neurofeedback like brain-computer interfaces (BCIs). This, can be augmented through proprioceptive feedback delivered many times by embodied virtual reality (VR). Nonetheless, despite a growing body of research demonstrating the individual efficacy of each technique, there is limited information on their combined effects.Approach.In this study, we analyzed the Electroencephalographic (EEG) signals acquired from 10 patients with more than 4 months since stroke during a longitudinal intervention with repetitive TMS followed by VR-BCI training. From the EEG, the event related desynchronization (ERD) and individual alpha frequency (IAF) were extracted, evaluated over time and correlated with clinical outcome.Main results.Every patient's clinical outcome improved after treatment, and ERD magnitude increased during simultaneous rTMS and VR-BCI. Additionally, IAF values showed a significant correlation with clinical outcome, nonetheless, no relationship was found between differences in ERD pre- post- intervention with the clinical improvement.Significance.This study furnishes empirical evidence supporting the efficacy of the joint action of rTMS and VR-BCI in enhancing patient recovery. It also suggests a relationship between IAF and rehabilitation outcomes, that could potentially serve as a retrievable biomarker for stroke recovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究双侧经颅磁刺激和虚拟现实脑机接口训练对慢性中风患者的协同神经调节作用
目的:脑卒中是全球成年残疾人的主要致残原因,会导致运动障碍。为了恢复运动功能,患者需要接受康复训练,通常包括重复运动训练。对于缺乏自主运动能力的患者,新出现的基于技术的方法通过经颅磁刺激(TMS)等神经调节技术和脑机接口(BCIs)等闭环神经反馈技术,直接参与中枢神经系统。此外,虚拟现实技术(VR)多次提供的本体感觉反馈也可对此进行增强。然而,尽管越来越多的研究证明了每种技术的单独功效,但有关其综合效果的信息却十分有限:在这项研究中,我们分析了 10 名中风超过 4 个月的患者在接受重复 TMS 和 VR-BCI 训练的纵向干预期间获得的脑电图(EEG)信号。从脑电信号中提取了事件相关非同步化(ERD)和个体阿尔法频率(IAF),对其进行了长期评估,并将其与临床结果相关联:结果:治疗后,每位患者的临床疗效都有所改善。此外,IAF 值与临床结果有显著相关性,但干预前和干预后 ERD 的差异与临床改善之间没有关系:本研究为经颅磁刺激和虚拟现实脑干成像联合作用在促进患者康复方面的疗效提供了实证支持。该研究还表明,IAF 与康复效果之间存在关系,有可能成为中风康复的可检索生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention demands modulate brain electrical microstates and mental fatigue induced by simulated flight tasks. Temporal attention fusion network with custom loss function for EEG-fNIRS classification. Classification of hand movements from EEG using a FusionNet based LSTM network. Frequency-dependent phase entrainment of cortical cell types during tACS: computational modeling evidence. Patient-specific visual neglect severity estimation for stroke patients with neglect using EEG.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1