Mineralocorticoid receptor expression and the effects of the mineralocorticoid receptor antagonist spironolactone in a murine model of graft-versus-host disease
Shinri Sato , Yoko Ogawa , Calvin W. Wong , Harrison L. Le , Richard W. Yee , Dan S. Gombos , Kazuno Negishi , Masatoshi Hirayama
{"title":"Mineralocorticoid receptor expression and the effects of the mineralocorticoid receptor antagonist spironolactone in a murine model of graft-versus-host disease","authors":"Shinri Sato , Yoko Ogawa , Calvin W. Wong , Harrison L. Le , Richard W. Yee , Dan S. Gombos , Kazuno Negishi , Masatoshi Hirayama","doi":"10.1016/j.jtos.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>The topical administration of spironolactone, a mineralocorticoid receptor antagonist (MRA) improves dry eye symptoms in patients with ocular graft-versus-host disease (GVHD); however, the detailed mechanism remains unclear. This study aimed to investigate the effects of spironolactone eyedrops on the ocular surface using a chronic GVHD (cGVHD) mouse model and to determine the expression of the mineralocorticoid receptor (MR).</div></div><div><h3>Methods</h3><div>A cGVHD mouse model was established by allogeneic bone marrow transplantation (BMT) from B10.D2 mice to BALB/c mice. Subsequently, cGVHD mice were treated with either 0.005 % spironolactone or vehicle eyedrops. The eyelids, cornea and conjunctiva of the recipients were analyzed at 4-week intervals post-BMT in both groups.</div></div><div><h3>Results</h3><div>Signs of ocular GVHD, such as corneal epithelial damage, depletion of meibomian glands, and inflammatory cell infiltration onto the ocular surface, were significantly decreased in cGVHD mice treated with spironolactone eyedrops. The expression of the MR NR3C2 in the corneal and conjunctival epithelia was significantly increased in cGVHD mice. HSP47<sup>+</sup>NR3C2<sup>+</sup> MR-expressing fibroblasts, CD45<sup>+</sup>NR3C2<sup>+</sup> MR-expressing leukocytes, and CD4<sup>+</sup>NR3C2<sup>+</sup> MR-expressing T cells infiltrated the ocular surface tissue of cGVHD mice significantly more than that of syngeneic controls.</div></div><div><h3>Conclusions</h3><div>MR expression is increased in epithelial cells, fibroblasts, and T cells in a murine cGVHD model, whereas MRA and spironolactone eyedrops could attenuate the severity of ocular GVHD. These findings suggest that MR signaling partially contributes to the development of ocular GVHD in this mouse model.</div></div>","PeriodicalId":54691,"journal":{"name":"Ocular Surface","volume":"34 ","pages":"Pages 477-488"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocular Surface","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1542012424001101","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The topical administration of spironolactone, a mineralocorticoid receptor antagonist (MRA) improves dry eye symptoms in patients with ocular graft-versus-host disease (GVHD); however, the detailed mechanism remains unclear. This study aimed to investigate the effects of spironolactone eyedrops on the ocular surface using a chronic GVHD (cGVHD) mouse model and to determine the expression of the mineralocorticoid receptor (MR).
Methods
A cGVHD mouse model was established by allogeneic bone marrow transplantation (BMT) from B10.D2 mice to BALB/c mice. Subsequently, cGVHD mice were treated with either 0.005 % spironolactone or vehicle eyedrops. The eyelids, cornea and conjunctiva of the recipients were analyzed at 4-week intervals post-BMT in both groups.
Results
Signs of ocular GVHD, such as corneal epithelial damage, depletion of meibomian glands, and inflammatory cell infiltration onto the ocular surface, were significantly decreased in cGVHD mice treated with spironolactone eyedrops. The expression of the MR NR3C2 in the corneal and conjunctival epithelia was significantly increased in cGVHD mice. HSP47+NR3C2+ MR-expressing fibroblasts, CD45+NR3C2+ MR-expressing leukocytes, and CD4+NR3C2+ MR-expressing T cells infiltrated the ocular surface tissue of cGVHD mice significantly more than that of syngeneic controls.
Conclusions
MR expression is increased in epithelial cells, fibroblasts, and T cells in a murine cGVHD model, whereas MRA and spironolactone eyedrops could attenuate the severity of ocular GVHD. These findings suggest that MR signaling partially contributes to the development of ocular GVHD in this mouse model.
期刊介绍:
The Ocular Surface, a quarterly, a peer-reviewed journal, is an authoritative resource that integrates and interprets major findings in diverse fields related to the ocular surface, including ophthalmology, optometry, genetics, molecular biology, pharmacology, immunology, infectious disease, and epidemiology. Its critical review articles cover the most current knowledge on medical and surgical management of ocular surface pathology, new understandings of ocular surface physiology, the meaning of recent discoveries on how the ocular surface responds to injury and disease, and updates on drug and device development. The journal also publishes select original research reports and articles describing cutting-edge techniques and technology in the field.
Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.
Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center