{"title":"DNA methylation-regulated HK1 overexpression contributes to irradiation-resistance by promoting glycolysis in non-small cell lung cancer.","authors":"Weimin Hu, Ying Lin, Ling Cheng, Jian Zhao, Yonghui Wu, Jun Yin","doi":"10.62347/QMGJ2157","DOIUrl":null,"url":null,"abstract":"<p><p>Irradiation-resistance presents a substantial challenge in the successful application of radiotherapy for non-small-cell lung cancer (NSCLC). However, the specific molecular mechanisms responsible for irradiation-resistance have yet to be completely understood. In this research, the DNA methylation and gene expression patterns resulting from irradiation treatment were produced using the DNA methylation BeadChip and RNA-Seq. An integrated analysis was carried out to identify the genes that are differentially expressed and regulated by DNA methylation. As results, the upregulation of gene expression and downregulation of DNA methylation of hexokinase 1 (HK1), a protein associated with glycolysis, were observed in irradiation-resistant NSCLC cells. Additionally, treatment with the DNA demethylating agent 5-aza-2'-deoxycytidine (5-Aza-dC) resulted in increased expression of HK1. Furthermore, it was found that overexpression of HK1 could enhance irradiation-resistance by impacting glycolysis. Collectively, our study indicate that irradiation-induced alterations in DNA methylation lead to the upregulation of HK1, which in turn promotes glycolysis and contributes to radiotherapy resistance in NSCLC. Therefore, targeting HK1 presents a potential novel strategy for addressing the issue of radiotherapy failure in NSCLC.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 9","pages":"4306-4319"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/QMGJ2157","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Irradiation-resistance presents a substantial challenge in the successful application of radiotherapy for non-small-cell lung cancer (NSCLC). However, the specific molecular mechanisms responsible for irradiation-resistance have yet to be completely understood. In this research, the DNA methylation and gene expression patterns resulting from irradiation treatment were produced using the DNA methylation BeadChip and RNA-Seq. An integrated analysis was carried out to identify the genes that are differentially expressed and regulated by DNA methylation. As results, the upregulation of gene expression and downregulation of DNA methylation of hexokinase 1 (HK1), a protein associated with glycolysis, were observed in irradiation-resistant NSCLC cells. Additionally, treatment with the DNA demethylating agent 5-aza-2'-deoxycytidine (5-Aza-dC) resulted in increased expression of HK1. Furthermore, it was found that overexpression of HK1 could enhance irradiation-resistance by impacting glycolysis. Collectively, our study indicate that irradiation-induced alterations in DNA methylation lead to the upregulation of HK1, which in turn promotes glycolysis and contributes to radiotherapy resistance in NSCLC. Therefore, targeting HK1 presents a potential novel strategy for addressing the issue of radiotherapy failure in NSCLC.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.