Zhifen Yuan, Chun Fu, Jie Liu, Fei Leng, Christoph Weihrauch, Jörg Rinklebe, Johannes Rousk, Bofu Zheng, Ruichang Shen
{"title":"Soil Organic Carbon Stocks Depend Differently on Physicochemical Features in Subtropical Seasonally Flooded Wetland and Non-flooded Shoreland Forest","authors":"Zhifen Yuan, Chun Fu, Jie Liu, Fei Leng, Christoph Weihrauch, Jörg Rinklebe, Johannes Rousk, Bofu Zheng, Ruichang Shen","doi":"10.1002/ldr.5350","DOIUrl":null,"url":null,"abstract":"In recent years, an increasing number of ecosystems are threatened by seasonal flooding, changing non-flooded shoreland (NF) into seasonally flooded wetland (SF), but the consequences of this hydrological change for soil organic carbon (SOC) dynamics remain unknown. In this study, we investigated how the SOC content was determined by flooding duration and soil physicochemical variables in adjacent SF and NF at six depths (0–10 cm, 10–20 cm, 20–30 cm, 30–50 cm, 50–70 cm, and 70–100 cm) at Shengjin Lake in subtropical China. Soil physicochemistry and SOC composition were analyzed, and Fourier-transformed infrared spectroscopy (FTIR) was used to resolve the SOC composition. Neither SOC content nor the vertical distribution of SOC was distinguishable between the sites. However, FTIR data revealed that plant-originated aliphatics and amides were higher at NF than SF sites, with the opposite pattern for aromatics. At SF sites, SOC content was positively affected by soil moisture and flooding duration and was negatively impacted by soil particle size at most soil layers. At NF sites, SOC content was mainly affected by silt and total Fe at the top 20 cm soil, while a higher fraction of plant-derived labile C was positively correlated to SOC contents at 30–100 cm depth. The results hence indicated a strong effect of seasonal flooding on SOC dynamics in terrestrial ecosystems. SOC stabilization induced by low mineralization and high adsorption played a central role at SF sites, while SOC formation through plant input was more important at NF sites. Our findings suggest that management strategies designed to conserve SOC will need to be site-specific.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"66 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5350","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, an increasing number of ecosystems are threatened by seasonal flooding, changing non-flooded shoreland (NF) into seasonally flooded wetland (SF), but the consequences of this hydrological change for soil organic carbon (SOC) dynamics remain unknown. In this study, we investigated how the SOC content was determined by flooding duration and soil physicochemical variables in adjacent SF and NF at six depths (0–10 cm, 10–20 cm, 20–30 cm, 30–50 cm, 50–70 cm, and 70–100 cm) at Shengjin Lake in subtropical China. Soil physicochemistry and SOC composition were analyzed, and Fourier-transformed infrared spectroscopy (FTIR) was used to resolve the SOC composition. Neither SOC content nor the vertical distribution of SOC was distinguishable between the sites. However, FTIR data revealed that plant-originated aliphatics and amides were higher at NF than SF sites, with the opposite pattern for aromatics. At SF sites, SOC content was positively affected by soil moisture and flooding duration and was negatively impacted by soil particle size at most soil layers. At NF sites, SOC content was mainly affected by silt and total Fe at the top 20 cm soil, while a higher fraction of plant-derived labile C was positively correlated to SOC contents at 30–100 cm depth. The results hence indicated a strong effect of seasonal flooding on SOC dynamics in terrestrial ecosystems. SOC stabilization induced by low mineralization and high adsorption played a central role at SF sites, while SOC formation through plant input was more important at NF sites. Our findings suggest that management strategies designed to conserve SOC will need to be site-specific.
期刊介绍:
Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on:
- what land degradation is;
- what causes land degradation;
- the impacts of land degradation
- the scale of land degradation;
- the history, current status or future trends of land degradation;
- avoidance, mitigation and control of land degradation;
- remedial actions to rehabilitate or restore degraded land;
- sustainable land management.