Directional regulation on single-molecule redox-targeting reaction in neutral zinc-iron flow batteries

IF 2.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR European Journal of Inorganic Chemistry Pub Date : 2024-10-22 DOI:10.1016/j.joule.2024.09.015
Yichong Cai, Hang Zhang, Tidong Wang, Shibo Xi, Yuxi Song, Sida Rong, Jin Ma, Zheng Han, Chee Tong John Low, Qing Wang, Ya Ji
{"title":"Directional regulation on single-molecule redox-targeting reaction in neutral zinc-iron flow batteries","authors":"Yichong Cai, Hang Zhang, Tidong Wang, Shibo Xi, Yuxi Song, Sida Rong, Jin Ma, Zheng Han, Chee Tong John Low, Qing Wang, Ya Ji","doi":"10.1016/j.joule.2024.09.015","DOIUrl":null,"url":null,"abstract":"Aqueous redox flow batteries (ARFBs) are promising long-duration energy storage systems but struggle with low-energy density due to the inherent properties of liquid electrolytes. Herein, we report a [Fe(CN)<sub>6</sub>]<sup>3−/4−</sup>-LiMn<sub>x</sub>Fe<sub>1 − x</sub>PO<sub>4</sub>/Zn flow battery utilizing redox-targeting (RT) electrochemical-chemical loop, exhibiting an outstanding energy density of 118.3 Wh L<sup>−1</sup>, surpassing blank RFB by 5.6 times. Remarkably, the RT reaction between redox mediator [Fe(CN)<sub>6</sub>]<sup>3−/4−</sup> and solid energy booster LiMn<sub>x</sub>Fe<sub>1 − x</sub>PO<sub>4</sub> is directionally regulated, clearly revealing the quantitative relation between capacity enhancement and potential difference. Moreover, unprecedented Coulombic efficiency (99.9%), solid booster utilization (78.4%), and capacity retention (99.8% per cycle) are achieved at 10 mA cm<sup>−2</sup>. Intriguingly, <em>operando</em> synchrotron X-ray absorption spectroscopy unveils the reversible changes of the Fe–O and Fe–Fe bonds in the [Fe(CN)<sub>6</sub>]<sup>3−/4−</sup>-LiMn<sub>x</sub>Fe<sub>1 − x</sub>PO<sub>4</sub> RT system during real-time monitoring. This work suggests an appealing way for capacity enhancement in ARFBs and provides profound insight into the fundamental chemistry of the RT reaction in safe, energy-dense batteries.","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"25 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.09.015","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous redox flow batteries (ARFBs) are promising long-duration energy storage systems but struggle with low-energy density due to the inherent properties of liquid electrolytes. Herein, we report a [Fe(CN)6]3−/4−-LiMnxFe1 − xPO4/Zn flow battery utilizing redox-targeting (RT) electrochemical-chemical loop, exhibiting an outstanding energy density of 118.3 Wh L−1, surpassing blank RFB by 5.6 times. Remarkably, the RT reaction between redox mediator [Fe(CN)6]3−/4− and solid energy booster LiMnxFe1 − xPO4 is directionally regulated, clearly revealing the quantitative relation between capacity enhancement and potential difference. Moreover, unprecedented Coulombic efficiency (99.9%), solid booster utilization (78.4%), and capacity retention (99.8% per cycle) are achieved at 10 mA cm−2. Intriguingly, operando synchrotron X-ray absorption spectroscopy unveils the reversible changes of the Fe–O and Fe–Fe bonds in the [Fe(CN)6]3−/4−-LiMnxFe1 − xPO4 RT system during real-time monitoring. This work suggests an appealing way for capacity enhancement in ARFBs and provides profound insight into the fundamental chemistry of the RT reaction in safe, energy-dense batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中性锌-铁液流电池中单分子氧化还原定向反应的定向调节
水氧化还原液流电池(ARFB)是一种前景广阔的长效储能系统,但由于液态电解质的固有特性,其能量密度较低。在此,我们报告了一种利用氧化还原靶向(RT)电化学循环的[Fe(CN)6]3-/4--LiMnxFe1 - xPO4/Zn液流电池,其能量密度高达118.3 Wh L-1,是空白液流电池的5.6倍。值得注意的是,氧化还原介质[Fe(CN)6]3-/4-与固体增能剂 LiMnxFe1 - xPO4 之间的 RT 反应是定向调节的,清楚地揭示了容量增强与电位差之间的定量关系。此外,在 10 mA cm-2 的条件下,还实现了前所未有的库仑效率(99.9%)、固体增能剂利用率(78.4%)和容量保持率(每周期 99.8%)。有趣的是,在实时监测过程中,操作同步辐射 X 射线吸收光谱揭示了[Fe(CN)6]3-/4--LiMnxFe1 - xPO4 RT 系统中 Fe-O 和 Fe-Fe 键的可逆变化。这项工作为提高 ARFB 的容量提供了一种有吸引力的方法,并对安全、高能量电池中 RT 反应的基本化学原理提供了深刻的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Inorganic Chemistry
European Journal of Inorganic Chemistry 化学-无机化学与核化学
CiteScore
4.30
自引率
4.30%
发文量
419
审稿时长
1.3 months
期刊介绍: The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry: Chemische Berichte Bulletin des Sociétés Chimiques Belges Bulletin de la Société Chimique de France Gazzetta Chimica Italiana Recueil des Travaux Chimiques des Pays-Bas Anales de Química Chimika Chronika Revista Portuguesa de Química ACH—Models in Chemistry Polish Journal of Chemistry The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.
期刊最新文献
Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene Cracking the triple helix Presenting the tactile periodic table De-doping engineering for efficient and heat-stable perovskite solar cells Promising excitonic absorption for efficient perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1