Yimeng Cao, Jun Chen, Chunmei Ding, Ying Zhang, Haibo Chi, Yan Liu, Can Li
{"title":"Electrochemical CO2 fixation with amines to synthesize α-amino acids","authors":"Yimeng Cao, Jun Chen, Chunmei Ding, Ying Zhang, Haibo Chi, Yan Liu, Can Li","doi":"10.1016/j.checat.2024.101158","DOIUrl":null,"url":null,"abstract":"α-Amino acids (α-aa) play a significant role in pharmaceutical and chemical industries. Here, we reported an electrochemical tandem system that couples the anodic dehydrogenation of amines and the cathodic carboxylation of imines. Based on a designed Lewis acid (LA)-enriched CeO<sub>2</sub> with indium (denoted as In-CeO<sub>x</sub>) as cathodic electrocatalysts, we achieved 82% and 92% yields of stable imines and α-aa in a membrane-separated cell system, respectively. In a membrane-free system, quaternary or cyclic α-aa could be directly obtained from amines and CO<sub>2</sub> with up to 83% yield. Mechanistic investigations have elucidated that the incorporation of indium (In) yields elevated levels of LA sites. These enhanced LA sites play a pivotal role in facilitating the capture and activation of imines. This function of In-CeO<sub>x</sub>, coupled with CO<sub>2</sub> activation mediated by In species, is proven to be crucial for achieving high reactivity and selectivity in the cathodic carboxylation reaction.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"1 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
α-Amino acids (α-aa) play a significant role in pharmaceutical and chemical industries. Here, we reported an electrochemical tandem system that couples the anodic dehydrogenation of amines and the cathodic carboxylation of imines. Based on a designed Lewis acid (LA)-enriched CeO2 with indium (denoted as In-CeOx) as cathodic electrocatalysts, we achieved 82% and 92% yields of stable imines and α-aa in a membrane-separated cell system, respectively. In a membrane-free system, quaternary or cyclic α-aa could be directly obtained from amines and CO2 with up to 83% yield. Mechanistic investigations have elucidated that the incorporation of indium (In) yields elevated levels of LA sites. These enhanced LA sites play a pivotal role in facilitating the capture and activation of imines. This function of In-CeOx, coupled with CO2 activation mediated by In species, is proven to be crucial for achieving high reactivity and selectivity in the cathodic carboxylation reaction.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.