Katherine M. Collins, Ilia Sucholutsky, Umang Bhatt, Kartik Chandra, Lionel Wong, Mina Lee, Cedegao E. Zhang, Tan Zhi-Xuan, Mark Ho, Vikash Mansinghka, Adrian Weller, Joshua B. Tenenbaum, Thomas L. Griffiths
{"title":"Building machines that learn and think with people","authors":"Katherine M. Collins, Ilia Sucholutsky, Umang Bhatt, Kartik Chandra, Lionel Wong, Mina Lee, Cedegao E. Zhang, Tan Zhi-Xuan, Mark Ho, Vikash Mansinghka, Adrian Weller, Joshua B. Tenenbaum, Thomas L. Griffiths","doi":"10.1038/s41562-024-01991-9","DOIUrl":null,"url":null,"abstract":"What do we want from machine intelligence? We envision machines that are not just tools for thought but partners in thought: reasonable, insightful, knowledgeable, reliable and trustworthy systems that think with us. Current artificial intelligence systems satisfy some of these criteria, some of the time. In this Perspective, we show how the science of collaborative cognition can be put to work to engineer systems that really can be called ‘thought partners’, systems built to meet our expectations and complement our limitations. We lay out several modes of collaborative thought in which humans and artificial intelligence thought partners can engage, and we propose desiderata for human-compatible thought partnerships. Drawing on motifs from computational cognitive science, we motivate an alternative scaling path for the design of thought partners and ecosystems around their use through a Bayesian lens, whereby the partners we construct actively build and reason over models of the human and world. In this Perspective, the authors advance a view for the science of collaborative cognition to engineer systems that can be considered thought partners, systems built to meet our expectations and complement our limitations.","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":null,"pages":null},"PeriodicalIF":21.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Human Behaviour","FirstCategoryId":"102","ListUrlMain":"https://www.nature.com/articles/s41562-024-01991-9","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
What do we want from machine intelligence? We envision machines that are not just tools for thought but partners in thought: reasonable, insightful, knowledgeable, reliable and trustworthy systems that think with us. Current artificial intelligence systems satisfy some of these criteria, some of the time. In this Perspective, we show how the science of collaborative cognition can be put to work to engineer systems that really can be called ‘thought partners’, systems built to meet our expectations and complement our limitations. We lay out several modes of collaborative thought in which humans and artificial intelligence thought partners can engage, and we propose desiderata for human-compatible thought partnerships. Drawing on motifs from computational cognitive science, we motivate an alternative scaling path for the design of thought partners and ecosystems around their use through a Bayesian lens, whereby the partners we construct actively build and reason over models of the human and world. In this Perspective, the authors advance a view for the science of collaborative cognition to engineer systems that can be considered thought partners, systems built to meet our expectations and complement our limitations.
期刊介绍:
Nature Human Behaviour is a journal that focuses on publishing research of outstanding significance into any aspect of human behavior.The research can cover various areas such as psychological, biological, and social bases of human behavior.It also includes the study of origins, development, and disorders related to human behavior.The primary aim of the journal is to increase the visibility of research in the field and enhance its societal reach and impact.