Ultrasound-Driven Nanomachine for Enhanced Sonodynamic Therapy of Non-Small-Cell Lung Cancer

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-22 DOI:10.1021/acsami.4c11546
Wei Ping, Xiaoxin Zhang, Hao Zeng, Taomin Zhu, Ni Zhang, Qi Yan
{"title":"Ultrasound-Driven Nanomachine for Enhanced Sonodynamic Therapy of Non-Small-Cell Lung Cancer","authors":"Wei Ping, Xiaoxin Zhang, Hao Zeng, Taomin Zhu, Ni Zhang, Qi Yan","doi":"10.1021/acsami.4c11546","DOIUrl":null,"url":null,"abstract":"Non-small-cell lung cancer (NSCLC) is the most prevalent type of lung cancer, and there is an urgent need for developing novel therapies. Sonodynamic therapy exhibits exceptional tissue penetration and minimal harm to healthy tissue, making it extremely promising for cancer treatment. The efficacy of SDT is limited by the intricate immunological microenvironment and the resistance to tumor treatment. This study developed targeted nanoparticles that use ultrasound to concentrate on treating NSCLC. The hybrid targeted nanoparticles utilize gold nanoparticles as their fundamental component, with the outside modified with engineered macrophage exosomes and the aptamer S11e to specifically target NSCLC. Ultrasound could effectively eliminate tumors in NSCLC cells by destroying lysosomes via targeted nanoparticles. Simultaneously, fragmented tumor antigens could effectively activate dendritic cell cells to recruit T cells. This method has significant efficacy in suppressing the development of NSCLC and exhibits potential for therapeutic application.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11546","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-small-cell lung cancer (NSCLC) is the most prevalent type of lung cancer, and there is an urgent need for developing novel therapies. Sonodynamic therapy exhibits exceptional tissue penetration and minimal harm to healthy tissue, making it extremely promising for cancer treatment. The efficacy of SDT is limited by the intricate immunological microenvironment and the resistance to tumor treatment. This study developed targeted nanoparticles that use ultrasound to concentrate on treating NSCLC. The hybrid targeted nanoparticles utilize gold nanoparticles as their fundamental component, with the outside modified with engineered macrophage exosomes and the aptamer S11e to specifically target NSCLC. Ultrasound could effectively eliminate tumors in NSCLC cells by destroying lysosomes via targeted nanoparticles. Simultaneously, fragmented tumor antigens could effectively activate dendritic cell cells to recruit T cells. This method has significant efficacy in suppressing the development of NSCLC and exhibits potential for therapeutic application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非小细胞肺癌(NSCLC)是最常见的肺癌类型,因此迫切需要开发新型疗法。声动力疗法具有极强的组织穿透力,对健康组织的伤害极小,因此在癌症治疗中极具前景。但错综复杂的免疫微环境和肿瘤治疗的抗药性限制了 SDT 的疗效。本研究开发了利用超声波集中治疗 NSCLC 的靶向纳米粒子。这种混合型靶向纳米粒子以金纳米粒子为基本成分,外部用工程化巨噬细胞外泌体和适配体S11e修饰,可特异性地靶向NSCLC。通过靶向纳米粒子破坏溶酶体,超声波可有效消除 NSCLC 细胞中的肿瘤。同时,破碎的肿瘤抗原可有效激活树突状细胞,从而招募 T 细胞。这种方法对抑制非小细胞肺癌的发展有明显疗效,具有治疗应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Transparent, Flexible, Responsive Switching “Delayed” Amphiphilic Coatings Designed on the Basis of the Full-Cycle Antifouling Strategy Freestanding Penta-Twinned Pd–Ag Nanosheets Diradicaloid-Loaded Polypeptide Nanoparticles for Two-Photon NIR Phototheranostics Liquid Metal-Based Elastomer Composite with Selective Switchable Adhesion to Solids High-Efficiency Microwave Wireless Power Transmission via Reflective Phase Gradient Metasurfaces and Surface Wave Aggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1