Lucas Rannier R. A. Carvalho, Miho Shimari, Ariela Maína Boeder, Zhengbing Zhuge, Min Cai, Cecilia Leijding, Stefano Gastaldello, Andrei L. Kleschyov, Tomas A. Schiffer, Drielle Dantas Guimarães, Gaia Picozzi, Lars H. Lund, Bengt Fellström, Eddie Weitzberg, Jon O. Lundberg, Carolina E. Hagberg, Gianluigi Pironti, Daniel C. Andersson, Mattias Carlström
{"title":"A novel model of cardiovascular–kidney–metabolic syndrome combining unilateral nephrectomy and high-salt–sugar–fat diet in mice","authors":"Lucas Rannier R. A. Carvalho, Miho Shimari, Ariela Maína Boeder, Zhengbing Zhuge, Min Cai, Cecilia Leijding, Stefano Gastaldello, Andrei L. Kleschyov, Tomas A. Schiffer, Drielle Dantas Guimarães, Gaia Picozzi, Lars H. Lund, Bengt Fellström, Eddie Weitzberg, Jon O. Lundberg, Carolina E. Hagberg, Gianluigi Pironti, Daniel C. Andersson, Mattias Carlström","doi":"10.1038/s41684-024-01457-5","DOIUrl":null,"url":null,"abstract":"The aim of this study was to explore biological interaction and pathophysiology mechanisms in a new mouse model of cardiovascular–kidney–metabolic (CKM) syndrome, induced by chronic moderate renal failure in combination with consumption of a customized Western diet rich in carbohydrates, fat and salt. Male C57BL/6J mice were subjected to unilateral nephrectomy, fed a customized Western diet rich not only in sugar and fat but also in salt, and followed for 12 weeks or 20 weeks. Sham-operated mice on a standard chow served as healthy controls. Body composition, weight gain, glucose metabolism, fat distribution, blood pressure, cardiac function, vascular reactivity, renal function, inflammation and mitochondrial function were measured and combined with biochemical and histopathological analyses. The novel triple-hit model of CKM syndrome showed signs and symptoms of metabolic syndrome, disturbed glucose metabolism, impaired adipocyte physiology and fat redistribution, cardiovascular dysfunction, renal damage and dysfunction, systemic inflammation, elevated blood pressure and cardiac remodeling. The pathological changes were more pronounced in mice after prolonged exposure for 20 weeks, but no deaths occurred. In the present mouse model of CKM syndrome, profound and significant metabolic, cardiac, vascular and renal dysfunctions and injuries emerged by using a Western diet rich not only in fat and carbohydrates but also in salt. This multisystem disease model could be used for mechanistic studies and the evaluation of new therapeutic strategies. The authors describe a novel mouse model of cardiovascular–kidney–metabolic syndrome induced by unilateral nephrectomy and a Western diet rich in carbohydrates, fat and salt, which could be used to study human condition and identify therapies.","PeriodicalId":17936,"journal":{"name":"Lab Animal","volume":"53 11","pages":"336-346"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41684-024-01457-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab Animal","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41684-024-01457-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to explore biological interaction and pathophysiology mechanisms in a new mouse model of cardiovascular–kidney–metabolic (CKM) syndrome, induced by chronic moderate renal failure in combination with consumption of a customized Western diet rich in carbohydrates, fat and salt. Male C57BL/6J mice were subjected to unilateral nephrectomy, fed a customized Western diet rich not only in sugar and fat but also in salt, and followed for 12 weeks or 20 weeks. Sham-operated mice on a standard chow served as healthy controls. Body composition, weight gain, glucose metabolism, fat distribution, blood pressure, cardiac function, vascular reactivity, renal function, inflammation and mitochondrial function were measured and combined with biochemical and histopathological analyses. The novel triple-hit model of CKM syndrome showed signs and symptoms of metabolic syndrome, disturbed glucose metabolism, impaired adipocyte physiology and fat redistribution, cardiovascular dysfunction, renal damage and dysfunction, systemic inflammation, elevated blood pressure and cardiac remodeling. The pathological changes were more pronounced in mice after prolonged exposure for 20 weeks, but no deaths occurred. In the present mouse model of CKM syndrome, profound and significant metabolic, cardiac, vascular and renal dysfunctions and injuries emerged by using a Western diet rich not only in fat and carbohydrates but also in salt. This multisystem disease model could be used for mechanistic studies and the evaluation of new therapeutic strategies. The authors describe a novel mouse model of cardiovascular–kidney–metabolic syndrome induced by unilateral nephrectomy and a Western diet rich in carbohydrates, fat and salt, which could be used to study human condition and identify therapies.
期刊介绍:
LabAnimal is a Nature Research journal dedicated to in vivo science and technology that improves our basic understanding and use of model organisms of human health and disease. In addition to basic research, methods and technologies, LabAnimal also covers important news, business and regulatory matters that impact the development and application of model organisms for preclinical research.
LabAnimal's focus is on innovative in vivo methods, research and technology covering a wide range of model organisms. Our broad scope ensures that the work we publish reaches the widest possible audience. LabAnimal provides a rigorous and fair peer review of manuscripts, high standards for copyediting and production, and efficient publication.