{"title":"A New Method for Determining the Safety Distance Between Irregular Karst Cave and Circumferential Shield Tunnel","authors":"Yanhuan Zhang, Shangqu Sun, Jing Wang, Liping Li, Zizheng Sun, Diyang Chen, Yanqing Men","doi":"10.1002/nag.3869","DOIUrl":null,"url":null,"abstract":"When a shield tunnel passes through a karst area, the water‐filled cave can easily make the surrounding rock metamorphic, resulting in water inrush, ground collapse, and shield machine failure and other engineering hazards. Natural cavities have a significant degree of geometric irregularity due to groundwater alteration and soluble rock erosion. Considering the difficulties in describing the shape of a natural irregular cavity, circular, rectangular, and elliptical geometries have been simplified in most related studies. Based on the upper bound theorem of limit analysis, we established a three‐dimensional failure model including the karst caves located directly above and below the circumferential side of the tunnel. Then, we deduced the corresponding analytical solution of the critical safety distance (CSD). Furthermore, the effects of rock mass parameters, cave parameters, and geometric parameters on the CSD were analyzed. Then we designed the numerical simulation considering the irregular geometry shape at the circumferential side of tunnel using the Fourier descriptors. In addition, we estimated the CSDs for two failure models using the revised dichotomy and failure criterion. The findings demonstrated a quantifiable association between CSD and Fourier descriptors of irregular cave shape, resulting in the development of a CSD prediction model. These test results can provide a theoretical foundation and direction for predicting water inrush caused by the constrained irregular cave.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"3 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3869","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
When a shield tunnel passes through a karst area, the water‐filled cave can easily make the surrounding rock metamorphic, resulting in water inrush, ground collapse, and shield machine failure and other engineering hazards. Natural cavities have a significant degree of geometric irregularity due to groundwater alteration and soluble rock erosion. Considering the difficulties in describing the shape of a natural irregular cavity, circular, rectangular, and elliptical geometries have been simplified in most related studies. Based on the upper bound theorem of limit analysis, we established a three‐dimensional failure model including the karst caves located directly above and below the circumferential side of the tunnel. Then, we deduced the corresponding analytical solution of the critical safety distance (CSD). Furthermore, the effects of rock mass parameters, cave parameters, and geometric parameters on the CSD were analyzed. Then we designed the numerical simulation considering the irregular geometry shape at the circumferential side of tunnel using the Fourier descriptors. In addition, we estimated the CSDs for two failure models using the revised dichotomy and failure criterion. The findings demonstrated a quantifiable association between CSD and Fourier descriptors of irregular cave shape, resulting in the development of a CSD prediction model. These test results can provide a theoretical foundation and direction for predicting water inrush caused by the constrained irregular cave.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.