Establishing metal-nonoxygen bonds to improve thermal stability of Pt1/CeO2 via coating boron nitride

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-10-22 DOI:10.1016/j.ces.2024.120856
Qi Zhang , Xuan Tang , Yuwei Zhou , Yujie Shi , Lijun Ni , Jing Xu , Chengsi Pan , Ying Zhang , Bin Mu , Yun Guo , Yang Lou
{"title":"Establishing metal-nonoxygen bonds to improve thermal stability of Pt1/CeO2 via coating boron nitride","authors":"Qi Zhang ,&nbsp;Xuan Tang ,&nbsp;Yuwei Zhou ,&nbsp;Yujie Shi ,&nbsp;Lijun Ni ,&nbsp;Jing Xu ,&nbsp;Chengsi Pan ,&nbsp;Ying Zhang ,&nbsp;Bin Mu ,&nbsp;Yun Guo ,&nbsp;Yang Lou","doi":"10.1016/j.ces.2024.120856","DOIUrl":null,"url":null,"abstract":"<div><div>Supported metal catalysts are pivotal in the chemical industry, but achieving high activity while maintaining atomically dispersed status to maximize atom efficiency under harsh conditions remains a formidable challenge. In this study, we present a synthetic strategy to enhance the stability of ceria-supported Pt catalysts by coating them with an inert layer of boron nitride (Pt<sub>1</sub>/CeO<sub>2</sub>@BN). The BN layer serves to stabilize and modulate the dispersion and electronic state of Pt species, as well as the oxygen vacancy concentration of CeO<sub>2</sub>. Consequently, the Pt<sub>1</sub>/CeO<sub>2</sub>@BN catalyst maintained the atomically dispersed status of Pt species under high-temperature oxidative (900 °C for 3.5 h in air) and reductive (1000 °C for 1 h in H<sub>2</sub>) conditions and increased the turnover frequency for CO oxidation by four times at 140 °C. Our work offers a valuable strategy to enhance the thermal stability of supported metal catalysts under harsh reaction conditions.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"302 ","pages":"Article 120856"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924011564","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Supported metal catalysts are pivotal in the chemical industry, but achieving high activity while maintaining atomically dispersed status to maximize atom efficiency under harsh conditions remains a formidable challenge. In this study, we present a synthetic strategy to enhance the stability of ceria-supported Pt catalysts by coating them with an inert layer of boron nitride (Pt1/CeO2@BN). The BN layer serves to stabilize and modulate the dispersion and electronic state of Pt species, as well as the oxygen vacancy concentration of CeO2. Consequently, the Pt1/CeO2@BN catalyst maintained the atomically dispersed status of Pt species under high-temperature oxidative (900 °C for 3.5 h in air) and reductive (1000 °C for 1 h in H2) conditions and increased the turnover frequency for CO oxidation by four times at 140 °C. Our work offers a valuable strategy to enhance the thermal stability of supported metal catalysts under harsh reaction conditions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过氮化硼涂层建立金属-非氧键以提高 Pt1/CeO2 的热稳定性
支撑金属催化剂在化学工业中举足轻重,但要在苛刻条件下实现高活性,同时保持原子分散状态以最大限度地提高原子效率,仍然是一项艰巨的挑战。在本研究中,我们提出了一种合成策略,通过在铈支撑铂催化剂上涂覆一层惰性氮化硼层(Pt1/CeO2@BN)来增强其稳定性。氮化硼层的作用是稳定和调节铂物种的分散和电子状态,以及 CeO2 的氧空位浓度。因此,Pt1/CeO2@BN 催化剂在高温氧化(900 °C,空气中 3.5 小时)和还原(1000 °C,H2 中 1 小时)条件下保持了铂物种的原子分散状态,并将 140 °C 下 CO 氧化的翻转频率提高了四倍。我们的工作为提高支撑金属催化剂在苛刻反应条件下的热稳定性提供了一种有价值的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Observation and kinetic modeling of carbon dioxide deposition under reduced pressures at cryogenic temperatures An integrated algorithm framework for multi-objective optimization of heat exchanger networks considering temperature-dependent heat capacity Modified impregnation combined with thermal treatment to boost Au-Ti catalytic hydro-oxidation of propylene A mPOD-based Reduced-order Modelling Approach for Fast Gas-solid Flow Simulations New insights into activation mechanisms of peroxymonosulfate by halide ions for micropollutant abatement: The generation routes and contributions of reactive radicals and hypohalous acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1