Modified impregnation combined with thermal treatment to boost Au-Ti catalytic hydro-oxidation of propylene

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2025-01-04 DOI:10.1016/j.ces.2025.121184
Zhihua Zhang, Kesheng Xu, Yueqiang Cao, Xuezhi Duan, Xinggui Zhou
{"title":"Modified impregnation combined with thermal treatment to boost Au-Ti catalytic hydro-oxidation of propylene","authors":"Zhihua Zhang,&nbsp;Kesheng Xu,&nbsp;Yueqiang Cao,&nbsp;Xuezhi Duan,&nbsp;Xinggui Zhou","doi":"10.1016/j.ces.2025.121184","DOIUrl":null,"url":null,"abstract":"<div><div>Designing highly efficient Au-Ti bifunctional catalysts is pivotal to the hydro-oxidation of propylene to propylene oxide (PO). Herein, we report that the catalytic performance of Au/uncalcined TS-1 (i.e., TS-1-B) catalyst prepared via impregnation method using Na<sub>3</sub>Au(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub> as precursor can be remarkably enhanced by tuning the properties of active sites through thermal treatment. Increasing thermal treatment temperature favors the decomposition of sulfur species adsorbed on the surface of Au nanoparticles and the TPA<sup>+</sup> templates adsorbed on the external surface of the catalyst, thereby exposing more Au and Ti sites, while the dispersion of Au particles and surface hydrophobicity are inferior at elevated thermal treatment temperature. Consequently, PO formation rate exhibits a volcano-shaped relationship with thermal treatment temperature. Importantly, the as-obtained 0.035 wt% Au/TS-1-B catalyst displays a hydrogen efficiency of up 62 % in addition to promising PO selectivity (95 %) and PO formation rate (155 g<sub>PO</sub>·h<sup>−1</sup>·kg<sub>cat</sub><sup>-1</sup>) with no significant decline over 140 h.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"305 ","pages":"Article 121184"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925000077","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing highly efficient Au-Ti bifunctional catalysts is pivotal to the hydro-oxidation of propylene to propylene oxide (PO). Herein, we report that the catalytic performance of Au/uncalcined TS-1 (i.e., TS-1-B) catalyst prepared via impregnation method using Na3Au(S2O3)2 as precursor can be remarkably enhanced by tuning the properties of active sites through thermal treatment. Increasing thermal treatment temperature favors the decomposition of sulfur species adsorbed on the surface of Au nanoparticles and the TPA+ templates adsorbed on the external surface of the catalyst, thereby exposing more Au and Ti sites, while the dispersion of Au particles and surface hydrophobicity are inferior at elevated thermal treatment temperature. Consequently, PO formation rate exhibits a volcano-shaped relationship with thermal treatment temperature. Importantly, the as-obtained 0.035 wt% Au/TS-1-B catalyst displays a hydrogen efficiency of up 62 % in addition to promising PO selectivity (95 %) and PO formation rate (155 gPO·h−1·kgcat-1) with no significant decline over 140 h.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改性浸渍结合热处理促进Au-Ti催化丙烯加氢氧化
设计高效的Au-Ti双功能催化剂是丙烯加氢氧化制环氧丙烷的关键。本文报道了以Na3Au(S2O3)2为前驱体通过浸渍法制备的Au/未煅烧TS-1(即TS-1- b)催化剂,通过热处理调整活性位点的性质,可以显著提高其催化性能。提高热处理温度有利于吸附在Au纳米颗粒表面的硫种和吸附在催化剂外表面的TPA+模板的分解,从而暴露出更多的Au和Ti位,而提高热处理温度则使Au颗粒的分散性和表面疏水性较差。因此,PO形成速率与热处理温度呈火山状关系。重要的是,得到的0.035 wt% Au/TS-1-B催化剂的氢效率高达62 %,PO选择性为95 %,PO形成率为155 gPO·h−1·kgcat-1,在140 h以上没有显著下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Highly dense graphene-supported NiFe dual-atom oxygen electrocatalysts with boosted bifunctional electrocatalytic performance for rechargeable zinc-air batteries Engineering yolk-shell high-entropy oxides for durable urea wastewater remediation via anion exchange membrane electrolysis Volume-temperature flash calculation for multiphase equilibrium of hydrocarbon mixtures confined in nanopores Data-mechanism dual-driven modeling for enhanced prediction of lignin Hansen solubility parameters Oxygen vacancy-rich Bi12O17Cl12/BiOBr S-scheme heterojunction for enhanced photocatalytic degradation ciprofloxacin: Performance, mechanism and toxicity assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1