Philip Audebert, Eleanor Milne, Laure-Sophie Schiettecatte, Daniel Dionisio, Maidie Sinitambirivoutin, Carolina Pais, Clara Proença, Martial Bernoux
{"title":"Ecological zoning for climate policy and global change studies","authors":"Philip Audebert, Eleanor Milne, Laure-Sophie Schiettecatte, Daniel Dionisio, Maidie Sinitambirivoutin, Carolina Pais, Clara Proença, Martial Bernoux","doi":"10.1038/s41893-024-01416-5","DOIUrl":null,"url":null,"abstract":"As climate change accelerates, nations are moving towards meeting their nationally determined contributions and reducing greenhouse gas (GHG) emissions. Reporting of this from the agriculture, forestry and other land use sector relies on data related to land use and management, climate and soil type. Where such data are unavailable, the Intergovernmental Panel on Climate Change (IPCC) provides a set of default factors, based on an extensive literature review of likely GHG emission factors and carbon stock changes disaggregated by the Food and Agriculture Organization’s global ecological zones. As understanding of global ecological zones under environmental change improves, it becomes necessary to reassess such ecological zoning approaches to enable reporting of GHG emissions to support nationally determined contributions and global change studies. Here we propose a globally consistent ecological zoning approach based on Holdridge life zones using climatic data from the Climate Research Unit on a 0.5° grid, which tackles certain limitations found in the existing guidance provided by the IPCC. A set of three global ecological zone maps based on Holdridge life zones were devised using increasing levels of aggregation, which could support sustainability studies of global environmental change, specifically climate change, and be used as a zoning approach by the IPCC. Climate change policy and global change studies rely on maps that classify the world into different ecological zones. This study updates current approaches to ecological zoning of the world to ensure that consistent data are provided for such sustainability-related policy and studies.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":null,"pages":null},"PeriodicalIF":25.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01416-5","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As climate change accelerates, nations are moving towards meeting their nationally determined contributions and reducing greenhouse gas (GHG) emissions. Reporting of this from the agriculture, forestry and other land use sector relies on data related to land use and management, climate and soil type. Where such data are unavailable, the Intergovernmental Panel on Climate Change (IPCC) provides a set of default factors, based on an extensive literature review of likely GHG emission factors and carbon stock changes disaggregated by the Food and Agriculture Organization’s global ecological zones. As understanding of global ecological zones under environmental change improves, it becomes necessary to reassess such ecological zoning approaches to enable reporting of GHG emissions to support nationally determined contributions and global change studies. Here we propose a globally consistent ecological zoning approach based on Holdridge life zones using climatic data from the Climate Research Unit on a 0.5° grid, which tackles certain limitations found in the existing guidance provided by the IPCC. A set of three global ecological zone maps based on Holdridge life zones were devised using increasing levels of aggregation, which could support sustainability studies of global environmental change, specifically climate change, and be used as a zoning approach by the IPCC. Climate change policy and global change studies rely on maps that classify the world into different ecological zones. This study updates current approaches to ecological zoning of the world to ensure that consistent data are provided for such sustainability-related policy and studies.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.