Surui Yao, Yuandeng Shen, Chengrui Zhou, Dongxu Liu and Xinping Zhou
{"title":"Formation and Eruption of a Hot Channel Magnetic Flux Rope in a Nested Double Null Magnetic System","authors":"Surui Yao, Yuandeng Shen, Chengrui Zhou, Dongxu Liu and Xinping Zhou","doi":"10.3847/2041-8213/ad84ea","DOIUrl":null,"url":null,"abstract":"The coronal magnetic topology significantly affects the outcome of magnetic flux rope (MFR) eruptions. The recently reported nested double null magnetic system remains unclear as to how it affects MFR eruptions. Using observations from the New Vacuum Solar Telescope and the Solar Dynamics Observatory, we studied the formation and successful eruption of a hot channel MFR from NOAA active region AR 12173 on 2014 September 28. We observed that a hot channel MFR formed and erupted as a coronal mass ejection (CME), and the magnetic field of the source region was a nested double null magnetic system in which an inner magnetic null point system was nested by an outer fan–spine magnetic system. Observational analysis suggests that the origin of the MFR was due to magnetic reconnection at the inner null point, which was triggered by the photospheric swirling motions. The long-term shearing motion in the source region throughout around 26 hr might accumulate enough energy to power the eruption. Since previous studies showed that MFR eruptions from nested double null magnetic systems often result in weak jets and stalled or failed eruptions, it is hard to understand the generation of the large-scale CME in our case. A detailed comparison with previous studies reveals that the birth location of the MFR relative to the inner null point might be the critical physical factor for determining whether an MFR can erupt successfully or not in such a particular nested double null magnetic system.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad84ea","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The coronal magnetic topology significantly affects the outcome of magnetic flux rope (MFR) eruptions. The recently reported nested double null magnetic system remains unclear as to how it affects MFR eruptions. Using observations from the New Vacuum Solar Telescope and the Solar Dynamics Observatory, we studied the formation and successful eruption of a hot channel MFR from NOAA active region AR 12173 on 2014 September 28. We observed that a hot channel MFR formed and erupted as a coronal mass ejection (CME), and the magnetic field of the source region was a nested double null magnetic system in which an inner magnetic null point system was nested by an outer fan–spine magnetic system. Observational analysis suggests that the origin of the MFR was due to magnetic reconnection at the inner null point, which was triggered by the photospheric swirling motions. The long-term shearing motion in the source region throughout around 26 hr might accumulate enough energy to power the eruption. Since previous studies showed that MFR eruptions from nested double null magnetic systems often result in weak jets and stalled or failed eruptions, it is hard to understand the generation of the large-scale CME in our case. A detailed comparison with previous studies reveals that the birth location of the MFR relative to the inner null point might be the critical physical factor for determining whether an MFR can erupt successfully or not in such a particular nested double null magnetic system.