CEERS Key Paper. IX. Identifying Galaxy Mergers in CEERS NIRCam Images Using Random Forests and Convolutional Neural Networks

Caitlin Rose, Jeyhan S. Kartaltepe, Gregory F. Snyder, Marc Huertas-Company, L. Y. Aaron Yung, Pablo Arrabal Haro, Micaela B. Bagley, Laura Bisigello, Antonello Calabrò, Nikko J. Cleri, Mark Dickinson, Henry C. Ferguson, Steven L. Finkelstein, Adriano Fontana, Andrea Grazian, Norman A. Grogin, Benne W. Holwerda, Kartheik G. Iyer, Lisa J. Kewley, Allison Kirkpatrick, Dale D. Kocevski, Anton M. Koekemoer, Jennifer M. Lotz, Ray A. Lucas, Lorenzo Napolitano, Casey Papovich, Laura Pentericci, Pablo G. Pérez-González, Nor Pirzkal, Swara Ravindranath, Rachel S. Somerville, Amber N. Straughn, Jonathan R. Trump, Stephen M. Wilkins and Guang Yang
{"title":"CEERS Key Paper. IX. Identifying Galaxy Mergers in CEERS NIRCam Images Using Random Forests and Convolutional Neural Networks","authors":"Caitlin Rose, Jeyhan S. Kartaltepe, Gregory F. Snyder, Marc Huertas-Company, L. Y. Aaron Yung, Pablo Arrabal Haro, Micaela B. Bagley, Laura Bisigello, Antonello Calabrò, Nikko J. Cleri, Mark Dickinson, Henry C. Ferguson, Steven L. Finkelstein, Adriano Fontana, Andrea Grazian, Norman A. Grogin, Benne W. Holwerda, Kartheik G. Iyer, Lisa J. Kewley, Allison Kirkpatrick, Dale D. Kocevski, Anton M. Koekemoer, Jennifer M. Lotz, Ray A. Lucas, Lorenzo Napolitano, Casey Papovich, Laura Pentericci, Pablo G. Pérez-González, Nor Pirzkal, Swara Ravindranath, Rachel S. Somerville, Amber N. Straughn, Jonathan R. Trump, Stephen M. Wilkins and Guang Yang","doi":"10.3847/2041-8213/ad8dd4","DOIUrl":null,"url":null,"abstract":"A crucial yet challenging task in galaxy evolution studies is the identification of distant merging galaxies, a task that suffers from a variety of issues ranging from telescope sensitivities and limitations to the inherently chaotic morphologies of young galaxies. In this paper, we use random forests and convolutional neural networks to identify high-redshift JWST Cosmic Evolution Early Release Science Survey (CEERS) galaxy mergers. We train these algorithms on simulated 3 < z < 5 CEERS galaxies created from the IllustrisTNG subhalo morphologies and the Santa Cruz SAM light cone. We apply our models to observed CEERS galaxies at 3 < z < 5. We find that our models correctly classify ∼60%–70% of simulated merging and nonmerging galaxies; better performance on the merger class comes at the expense of misclassifying more nonmergers. We could achieve more accurate classifications, as well as test for a dependency on physical parameters such as gas fraction, mass ratio, and relative orbits, by curating larger training sets. When applied to real CEERS galaxies using visual classifications as ground truth, the random forests correctly classified 40%–60% of mergers and nonmergers at 3 < z < 4 but tended to classify most objects as nonmergers at 4 < z < 5 (misclassifying ∼70% of visually classified mergers). On the other hand, the CNNs tended to classify most objects as mergers across all redshifts (misclassifying 80%–90% of visually classified nonmergers). We investigate what features the models find most useful, as well as the characteristics of false positives and false negatives, and also calculate merger rates derived from the identifications made by the models.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad8dd4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A crucial yet challenging task in galaxy evolution studies is the identification of distant merging galaxies, a task that suffers from a variety of issues ranging from telescope sensitivities and limitations to the inherently chaotic morphologies of young galaxies. In this paper, we use random forests and convolutional neural networks to identify high-redshift JWST Cosmic Evolution Early Release Science Survey (CEERS) galaxy mergers. We train these algorithms on simulated 3 < z < 5 CEERS galaxies created from the IllustrisTNG subhalo morphologies and the Santa Cruz SAM light cone. We apply our models to observed CEERS galaxies at 3 < z < 5. We find that our models correctly classify ∼60%–70% of simulated merging and nonmerging galaxies; better performance on the merger class comes at the expense of misclassifying more nonmergers. We could achieve more accurate classifications, as well as test for a dependency on physical parameters such as gas fraction, mass ratio, and relative orbits, by curating larger training sets. When applied to real CEERS galaxies using visual classifications as ground truth, the random forests correctly classified 40%–60% of mergers and nonmergers at 3 < z < 4 but tended to classify most objects as nonmergers at 4 < z < 5 (misclassifying ∼70% of visually classified mergers). On the other hand, the CNNs tended to classify most objects as mergers across all redshifts (misclassifying 80%–90% of visually classified nonmergers). We investigate what features the models find most useful, as well as the characteristics of false positives and false negatives, and also calculate merger rates derived from the identifications made by the models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CEERS Key Paper.IX.利用随机森林和卷积神经网络识别 CEERS NIRCam 图像中的星系合并
星系演化研究中的一项重要而又具有挑战性的任务是识别遥远的合并星系,这项任务受到各种问题的困扰,从望远镜的灵敏度和局限性到年轻星系固有的混乱形态,不一而足。在本文中,我们使用随机森林和卷积神经网络来识别高红移的 JWST 宇宙演化早期释放科学巡天(CEERS)星系合并。我们在模拟的 3 < z < 5 CEERS 星系上训练这些算法,模拟的星系是由 IllustrisTNG 亚halo 形态和 Santa Cruz SAM 光锥创建的。我们发现,我们的模型能够正确地对60%-70%的模拟合并星系和非合并星系进行分类;在合并类星系上的更好表现是以误分更多的非合并星系为代价的。我们可以通过策划更大的训练集来实现更准确的分类,并测试物理参数(如气体分数、质量比和相对轨道)的依赖性。当把视觉分类作为基本事实应用于真实的CEERS星系时,随机森林在3<z<4时正确地分类了40%-60%的合并和非合并,但在4<z<5时往往把大多数天体分类为非合并(误分类了70%的视觉分类合并)。另一方面,CNNs倾向于将所有红移下的大多数天体归类为合并天体(误分类了80%-90%的目视分类的非合并天体)。我们研究了模型认为最有用的特征,以及假阳性和假阴性的特征,还计算了根据模型识别得出的合并率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Updated Cosmological Constraints in Extended Parameter Space with Planck PR4, DESI Baryon Acoustic Oscillations, and Supernovae: Dynamical Dark Energy, Neutrino Masses, Lensing Anomaly, and the Hubble Tension Rates and Beaming Angles of Gamma-Ray Bursts Associated with Compact Binary Coalescences Prominent Mid-infrared Excess of the Dwarf Planet (136472) Makemake Discovered by JWST/MIRI Indicates Ongoing Activity CEERS Key Paper. IX. Identifying Galaxy Mergers in CEERS NIRCam Images Using Random Forests and Convolutional Neural Networks Direct Measurements of Synchrotron-emitting Electrons at Near-Sun Shocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1