Ursula Oggenfuss, Robert T Todd, Natthapon Soisangwan, Bailey Kemp, Alison Guyer, Annette Beach, Anna Selmecki
{"title":"Candida albicans isolates contain frequent heterozygous structural variants and transposable elements within genes and centromeres","authors":"Ursula Oggenfuss, Robert T Todd, Natthapon Soisangwan, Bailey Kemp, Alison Guyer, Annette Beach, Anna Selmecki","doi":"10.1101/gr.279301.124","DOIUrl":null,"url":null,"abstract":"The human fungal pathogen <em>Candida albicans</em> poses a significant burden on global health, causing high rates of mortality and antifungal drug resistance. <em>C. albicans</em> is a heterozygous diploid organism that reproduces asexually. Structural variants (SVs) are an important source of genomic rearrangement, particularly in species that lack sexual recombination. To comprehensively investigate SVs across clinical isolates of <em>C. albicans</em>, we conducted long read sequencing and genome-wide SV analysis in three distantly related clinical isolates. Our work included a new, comprehensive analysis of transposable element (TE) composition, location and diversity. SVs and TEs are frequently close to coding sequences and many SVs are heterozygous, suggesting that SVs might impact gene and allele-specific expression. Most SVs are uniquely present in only one clinical isolate, indicating that SVs represent a significant source of intra-species genetic variation. We identified multiple, distinct SVs at the centromeres of Chromosome 4 and Chromosome 5, including inversions and transposon polymorphisms. These two chromosomes are often aneuploid in drug resistant clinical isolates, and can form isochromosome structures with breakpoints near the centromere. Further screening of 100 clinical isolates confirmed the widespread presence of centromeric SVs in <em>C. albicans</em>, often appearing in a heterozygous state, indicating that SVs are contributing to centromere evolution in <em>C. albicans</em>. Together, these findings highlight that SVs and TEs are common across diverse clinical isolates of <em>C. albicans</em> and that the centromeres of this organism are important sites of genome rearrangement.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279301.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human fungal pathogen Candida albicans poses a significant burden on global health, causing high rates of mortality and antifungal drug resistance. C. albicans is a heterozygous diploid organism that reproduces asexually. Structural variants (SVs) are an important source of genomic rearrangement, particularly in species that lack sexual recombination. To comprehensively investigate SVs across clinical isolates of C. albicans, we conducted long read sequencing and genome-wide SV analysis in three distantly related clinical isolates. Our work included a new, comprehensive analysis of transposable element (TE) composition, location and diversity. SVs and TEs are frequently close to coding sequences and many SVs are heterozygous, suggesting that SVs might impact gene and allele-specific expression. Most SVs are uniquely present in only one clinical isolate, indicating that SVs represent a significant source of intra-species genetic variation. We identified multiple, distinct SVs at the centromeres of Chromosome 4 and Chromosome 5, including inversions and transposon polymorphisms. These two chromosomes are often aneuploid in drug resistant clinical isolates, and can form isochromosome structures with breakpoints near the centromere. Further screening of 100 clinical isolates confirmed the widespread presence of centromeric SVs in C. albicans, often appearing in a heterozygous state, indicating that SVs are contributing to centromere evolution in C. albicans. Together, these findings highlight that SVs and TEs are common across diverse clinical isolates of C. albicans and that the centromeres of this organism are important sites of genome rearrangement.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.