Tridib Mahata, Katarzyna Kanarek, Moran G. Goren, Rameshkumar Marimuthu Ragavan, Eran Bosis, Udi Qimron, Dor Salomon
{"title":"Gamma-Mobile-Trio systems are mobile elements rich in bacterial defensive and offensive tools","authors":"Tridib Mahata, Katarzyna Kanarek, Moran G. Goren, Rameshkumar Marimuthu Ragavan, Eran Bosis, Udi Qimron, Dor Salomon","doi":"10.1038/s41564-024-01840-5","DOIUrl":null,"url":null,"abstract":"<p>The evolutionary arms race between bacteria and phages led to the emergence of bacterial immune systems whose diversity and dynamics remain poorly understood. Here we use comparative genomics to describe a widespread genetic element, defined by the presence of the Gamma-Mobile-Trio (GMT) proteins, that serves as a reservoir of offensive and defensive tools. We demonstrate, using <i>Vibrio parahaemolyticus</i> as a model, that GMT-containing genomic islands are active mobile elements. Furthermore, we show that GMT islands’ cargoes contain various anti-phage defence systems, antibacterial type VI secretion system (T6SS) effectors and antibiotic-resistance genes. We reveal four anti-phage defence systems encoded within GMT islands and further characterize one system, GAPS1, showing it is triggered by a phage capsid protein to induce cell dormancy. Our findings underscore the need to broaden the concept of ‘defence islands’ to include defensive and offensive tools, as both share the same mobile elements for dissemination.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"225 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-024-01840-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The evolutionary arms race between bacteria and phages led to the emergence of bacterial immune systems whose diversity and dynamics remain poorly understood. Here we use comparative genomics to describe a widespread genetic element, defined by the presence of the Gamma-Mobile-Trio (GMT) proteins, that serves as a reservoir of offensive and defensive tools. We demonstrate, using Vibrio parahaemolyticus as a model, that GMT-containing genomic islands are active mobile elements. Furthermore, we show that GMT islands’ cargoes contain various anti-phage defence systems, antibacterial type VI secretion system (T6SS) effectors and antibiotic-resistance genes. We reveal four anti-phage defence systems encoded within GMT islands and further characterize one system, GAPS1, showing it is triggered by a phage capsid protein to induce cell dormancy. Our findings underscore the need to broaden the concept of ‘defence islands’ to include defensive and offensive tools, as both share the same mobile elements for dissemination.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.