Comparative study of zinc sulfide, tin selenide, and their composite electrocatalysts for oxygen evolution reaction: Towards efficient and stable water splitting

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-10-23 DOI:10.1016/j.electacta.2024.145279
Rida Fatima , Kareem Yusuf , Muhammad Shuaib Khan , Mehar Un Nisa
{"title":"Comparative study of zinc sulfide, tin selenide, and their composite electrocatalysts for oxygen evolution reaction: Towards efficient and stable water splitting","authors":"Rida Fatima ,&nbsp;Kareem Yusuf ,&nbsp;Muhammad Shuaib Khan ,&nbsp;Mehar Un Nisa","doi":"10.1016/j.electacta.2024.145279","DOIUrl":null,"url":null,"abstract":"<div><div>Oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are critical processes in electrochemical water splitting, driving demand for efficient and durable electrocatalysts. This study presents a comprehensive evaluation of water splitting performance of ZnS@SnSe<sub>2</sub> nano–composite in 1.0 M KOH solution. With ZnS nanoparticles decorated on SnSe<sub>2</sub>, exhibited remarkable catalytic activity for both HER and OER. ZnS@SnSe₂ composite demonstrated an low overpotential of 22 mV to reach a current density of 10 mA cm<sup>-2</sup>, outperforming ZnS (245 mV) and SnSe<sub>2</sub> (280 mV). Furthermore, it achieved a Tafel slope of 25 mV dec<sup>‑1</sup> and a charge transfer resistance (Rct) of 5.2 Ω, reflecting its enhanced kinetics compared to ZnS (101 mV dec<sup>‑1</sup>, Rct = 35 Ω) and SnSe<sub>2</sub> (230 mV dec<sup>‑1</sup>, Rct = 7.5 Ω). These results are even competitive with benchmark Pt/C catalyst (30 mV overpotential, 46 mV dec<sup>‑1</sup>, and 2.2 Ω Rct), highlighting efficiency of composite for hydrogen production. For OER, ZnS@SnSe<sub>2</sub> composite required an overpotential of 234 mV to reach 10 mA cm⁻², a substantial improvement over ZnS (361 mV) and SnSe<sub>2</sub> (375 mV). Composite showcased a low Tafel slope of 48 mV dec<sup>‑1</sup> and an Rct of 1.5 Ω, comparable to commercial RuO<sub>2</sub> catalyst (44 mV dec<sup>‑1</sup>, Rct = 2.2 Ω), further underscoring its superior oxygen evolution capabilities. In practical device configuration, ZnS@SnSe₂/NF electrode achieved a Tafel slope of 21.335 mV dec<sup>‑1</sup> for HER and 58.028 mV dec<sup>‑1</sup> for OER, demonstrating its bifunctional efficiency in a two-electrode system. The device exhibited exceptional long-term stability over 50 h of continuous operation, highlighting its potential for scalable and sustainable water splitting applications.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"508 ","pages":"Article 145279"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015159","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are critical processes in electrochemical water splitting, driving demand for efficient and durable electrocatalysts. This study presents a comprehensive evaluation of water splitting performance of ZnS@SnSe2 nano–composite in 1.0 M KOH solution. With ZnS nanoparticles decorated on SnSe2, exhibited remarkable catalytic activity for both HER and OER. ZnS@SnSe₂ composite demonstrated an low overpotential of 22 mV to reach a current density of 10 mA cm-2, outperforming ZnS (245 mV) and SnSe2 (280 mV). Furthermore, it achieved a Tafel slope of 25 mV dec‑1 and a charge transfer resistance (Rct) of 5.2 Ω, reflecting its enhanced kinetics compared to ZnS (101 mV dec‑1, Rct = 35 Ω) and SnSe2 (230 mV dec‑1, Rct = 7.5 Ω). These results are even competitive with benchmark Pt/C catalyst (30 mV overpotential, 46 mV dec‑1, and 2.2 Ω Rct), highlighting efficiency of composite for hydrogen production. For OER, ZnS@SnSe2 composite required an overpotential of 234 mV to reach 10 mA cm⁻², a substantial improvement over ZnS (361 mV) and SnSe2 (375 mV). Composite showcased a low Tafel slope of 48 mV dec‑1 and an Rct of 1.5 Ω, comparable to commercial RuO2 catalyst (44 mV dec‑1, Rct = 2.2 Ω), further underscoring its superior oxygen evolution capabilities. In practical device configuration, ZnS@SnSe₂/NF electrode achieved a Tafel slope of 21.335 mV dec‑1 for HER and 58.028 mV dec‑1 for OER, demonstrating its bifunctional efficiency in a two-electrode system. The device exhibited exceptional long-term stability over 50 h of continuous operation, highlighting its potential for scalable and sustainable water splitting applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫化锌、硒化锡及其复合电催化剂在氧进化反应中的比较研究:实现高效稳定的水分离
氧进化反应(OER)和氢进化反应(HER)是电化学水分离的关键过程,因此需要高效耐用的电催化剂。本研究全面评估了 ZnS@SnSe2 纳米复合材料在 1.0 M KOH 溶液中的分水性能。在 SnSe2 上装饰了 ZnS 纳米颗粒后,ZnS@SnSe2 纳米复合材料在 HER 和 OER 中都表现出了显著的催化活性。ZnS@SnSe₂ 复合材料的过电位低至 22 mV,电流密度达到 10 mA cm-2,优于 ZnS(245 mV)和 SnSe2(280 mV)。此外,与 ZnS(101 mV dec-1,Rct = 35 Ω)和 SnSe2(230 mV dec-1,Rct = 7.5 Ω)相比,它的塔菲尔斜率(Tafel slope)为 25 mV dec-1,电荷转移电阻(Rct)为 5.2 Ω,反映了其更强的动力学性能。这些结果甚至可以与基准 Pt/C 催化剂(30 mV 过电位、46 mV dec-1 和 2.2 Ω Rct)相媲美,从而凸显了复合催化剂的制氢效率。就 OER 而言,ZnS@SnSe2 复合材料需要 234 mV 的过电位才能达到 10 mA cm-²,与 ZnS(361 mV)和 SnSe2(375 mV)相比有了大幅提高。复合材料的塔菲尔斜率较低,为 48 mV dec-1,Rct 为 1.5 Ω,与商用 RuO2 催化剂(44 mV dec-1,Rct = 2.2 Ω)相当,进一步突出了其卓越的氧进化能力。在实际器件配置中,ZnS@SnSe₂/NF 电极在 HER 和 OER 的塔菲尔斜率分别为 21.335 mV dec-1 和 58.028 mV dec-1,显示了其在双电极系统中的双功能效率。该装置在 50 小时的连续运行中表现出卓越的长期稳定性,突显了其在可扩展和可持续水分离应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Quinone Quest: Unraveling Electrochemical Performance in Quinone-Anchored 3D Graphene Architectures for High-Energy Supercapacitors Computational simulation of alternating current (AC) impedance of hardened cement mortar Optimum Ni:Co weight ratio for Pd-Nix-Coy/rGO catalyst nanoparticle for borohydride electro-oxidation in direct borohydride fuel cells Iron-Molybdenum Sulfide Electrocatalysts for the Hydrogen Evolution Reaction: An Operando XAS study Design and Synthesis of Hybrid Mo-Doped Bi₂O₃ Nanomaterials as an Efficient Electrodes for High-Performance Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1