Machine-guided design of cell-type-targeting cis-regulatory elements

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-10-23 DOI:10.1038/s41586-024-08070-z
Sager J. Gosai, Rodrigo I. Castro, Natalia Fuentes, John C. Butts, Kousuke Mouri, Michael Alasoadura, Susan Kales, Thanh Thanh L. Nguyen, Ramil R. Noche, Arya S. Rao, Mary T. Joy, Pardis C. Sabeti, Steven K. Reilly, Ryan Tewhey
{"title":"Machine-guided design of cell-type-targeting cis-regulatory elements","authors":"Sager J. Gosai, Rodrigo I. Castro, Natalia Fuentes, John C. Butts, Kousuke Mouri, Michael Alasoadura, Susan Kales, Thanh Thanh L. Nguyen, Ramil R. Noche, Arya S. Rao, Mary T. Joy, Pardis C. Sabeti, Steven K. Reilly, Ryan Tewhey","doi":"10.1038/s41586-024-08070-z","DOIUrl":null,"url":null,"abstract":"Cis-regulatory elements (CREs) control gene expression, orchestrating tissue identity, developmental timing and stimulus responses, which collectively define the thousands of unique cell types in the body1–3. While there is great potential for strategically incorporating CREs in therapeutic or biotechnology applications that require tissue specificity, there is no guarantee that an optimal CRE for these intended purposes has arisen naturally. Here we present a platform to engineer and validate synthetic CREs capable of driving gene expression with programmed cell-type specificity. We take advantage of innovations in deep neural network modelling of CRE activity across three cell types, efficient in silico optimization and massively parallel reporter assays to design and empirically test thousands of CREs4–8. Through large-scale in vitro validation, we show that synthetic sequences are more effective at driving cell-type-specific expression in three cell lines compared with natural sequences from the human genome and achieve specificity in analogous tissues when tested in vivo. Synthetic sequences exhibit distinct motif vocabulary associated with activity in the on-target cell type and a simultaneous reduction in the activity of off-target cells. Together, we provide a generalizable framework to prospectively engineer CREs from massively parallel reporter assay models and demonstrate the required literacy to write fit-for-purpose regulatory code. A generalizable framework to prospectively engineer cis-regulatory elements from massively parallel reporter assay models can be used to write fit-for-purpose regulatory code.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"634 8036","pages":"1211-1220"},"PeriodicalIF":50.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-08070-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08070-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cis-regulatory elements (CREs) control gene expression, orchestrating tissue identity, developmental timing and stimulus responses, which collectively define the thousands of unique cell types in the body1–3. While there is great potential for strategically incorporating CREs in therapeutic or biotechnology applications that require tissue specificity, there is no guarantee that an optimal CRE for these intended purposes has arisen naturally. Here we present a platform to engineer and validate synthetic CREs capable of driving gene expression with programmed cell-type specificity. We take advantage of innovations in deep neural network modelling of CRE activity across three cell types, efficient in silico optimization and massively parallel reporter assays to design and empirically test thousands of CREs4–8. Through large-scale in vitro validation, we show that synthetic sequences are more effective at driving cell-type-specific expression in three cell lines compared with natural sequences from the human genome and achieve specificity in analogous tissues when tested in vivo. Synthetic sequences exhibit distinct motif vocabulary associated with activity in the on-target cell type and a simultaneous reduction in the activity of off-target cells. Together, we provide a generalizable framework to prospectively engineer CREs from massively parallel reporter assay models and demonstrate the required literacy to write fit-for-purpose regulatory code. A generalizable framework to prospectively engineer cis-regulatory elements from massively parallel reporter assay models can be used to write fit-for-purpose regulatory code.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器引导设计细胞类型靶向顺式调控元件
顺式调控元件(CRE)控制着基因表达,协调着组织特性、发育时间和刺激反应,共同决定着人体内成千上万种独特的细胞类型1,2,3。虽然在需要组织特异性的治疗或生物技术应用中战略性地加入 CREs 有很大的潜力,但并不能保证这些预期目的的最佳 CRE 是自然产生的。在这里,我们提出了一个平台,用于设计和验证能够以程序化细胞类型特异性驱动基因表达的合成 CRE。我们利用对三种细胞类型的 CRE 活性进行深度神经网络建模、高效硅学优化和大规模并行报告检测等方面的创新,设计并实证测试了数千种 CRE4,5,6,7,8。通过大规模体外验证,我们发现与来自人类基因组的天然序列相比,合成序列能更有效地在三种细胞系中驱动细胞特异性表达,并且在体内测试时能在类似组织中实现特异性表达。合成序列表现出与在目标细胞类型中的活性相关的不同主题词汇,同时降低了在非目标细胞中的活性。总之,我们提供了一个可通用的框架,从大规模并行报告分析模型中前瞻性地设计 CREs,并展示了编写适合目的调控代码所需的素养。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
I help researchers to measure methane at a local level so that we can make global changes How provinces and cities can sustain US–China climate cooperation Great power and great responsibility: how consciousness changes the world The contentious genius who made black holes real Audio long read: AI has dreamt up a blizzard of new proteins. Do any of them actually work?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1