Promoting proximity to enhance Fe-Ca interaction for efficient integrated CO2 capture and hydrogenation

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2024-10-23 DOI:10.1016/j.seppur.2024.130227
Shuzhuang Sun , Bocheng Yu , Yanmei Shen , Yu Liu , Hongman Sun , Xuan Bie , Mengna Wu , Yongqing Xu , Chunfei Wu , Hui Zhou
{"title":"Promoting proximity to enhance Fe-Ca interaction for efficient integrated CO2 capture and hydrogenation","authors":"Shuzhuang Sun ,&nbsp;Bocheng Yu ,&nbsp;Yanmei Shen ,&nbsp;Yu Liu ,&nbsp;Hongman Sun ,&nbsp;Xuan Bie ,&nbsp;Mengna Wu ,&nbsp;Yongqing Xu ,&nbsp;Chunfei Wu ,&nbsp;Hui Zhou","doi":"10.1016/j.seppur.2024.130227","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated CO<sub>2</sub> capture and utilization (ICCU) using “capture-conversion” dual functional materials (DFMs) paves a cost-effective path for restricting CO<sub>2</sub> emissions by eliminating the energy-intensive intermediate processes. The interactions between catalysts and absorbents are believed pivotal in ICCU; however, there is a lack of environment-friendly strategy to fabricate the interaction for industrial applications. Here, we propose a solvent-free mechanochemical approach to promote the interaction by improving the proximity between natural calcium and iron sources. The interaction was systemically investigated and confirmed using XRD, XPS, TEM, TPR, etc. As a result, the mechanochemical approach derived DFM achieved 5.5 mmol g<sup>−1</sup> CO<sub>2</sub> capacity, 87 % CO<sub>2</sub> conversion, and 100 % CO selectivity at 650 °C, significantly outperforming the CaO-alone benchmark (CO<sub>2</sub> capacity &lt; 4.5 mmol g<sup>−1</sup>, CO<sub>2</sub> conversion &lt; 73 %). Further incorporating MgO would alleviate the sintering and promote the CO<sub>2</sub> capture stability (&lt; 15 % decrease after 20 cycles) by acting as a thermal-stable barrier. Based on in situ XRD, it is further confirmed that Fe-Ca interaction exhibits a dynamic looping mechanism in ICCU. The techno-economic analysis strongly supports the superiority of ICCU catalyzed by naturally sourced DFMs on eliminating the energy and H<sub>2</sub> consumption for CO<sub>2</sub> capture and upgradation. As a result, producing CO via ICCU using mechanochemical derived DFMs exhibits 20 % and 10 % cost decrease compared to the conventional CCU and ICCU using CaO alone scenarios, pointing out the potential of ICCU technology in industrial applications.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"357 ","pages":"Article 130227"},"PeriodicalIF":9.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586624039662","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Integrated CO2 capture and utilization (ICCU) using “capture-conversion” dual functional materials (DFMs) paves a cost-effective path for restricting CO2 emissions by eliminating the energy-intensive intermediate processes. The interactions between catalysts and absorbents are believed pivotal in ICCU; however, there is a lack of environment-friendly strategy to fabricate the interaction for industrial applications. Here, we propose a solvent-free mechanochemical approach to promote the interaction by improving the proximity between natural calcium and iron sources. The interaction was systemically investigated and confirmed using XRD, XPS, TEM, TPR, etc. As a result, the mechanochemical approach derived DFM achieved 5.5 mmol g−1 CO2 capacity, 87 % CO2 conversion, and 100 % CO selectivity at 650 °C, significantly outperforming the CaO-alone benchmark (CO2 capacity < 4.5 mmol g−1, CO2 conversion < 73 %). Further incorporating MgO would alleviate the sintering and promote the CO2 capture stability (< 15 % decrease after 20 cycles) by acting as a thermal-stable barrier. Based on in situ XRD, it is further confirmed that Fe-Ca interaction exhibits a dynamic looping mechanism in ICCU. The techno-economic analysis strongly supports the superiority of ICCU catalyzed by naturally sourced DFMs on eliminating the energy and H2 consumption for CO2 capture and upgradation. As a result, producing CO via ICCU using mechanochemical derived DFMs exhibits 20 % and 10 % cost decrease compared to the conventional CCU and ICCU using CaO alone scenarios, pointing out the potential of ICCU technology in industrial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
促进邻近性,增强铁-钙相互作用,实现高效的二氧化碳捕获和氢化一体化
使用 "捕获-转化 "双功能材料(DFMs)的二氧化碳捕获和综合利用(ICCU)通过消除能源密集型中间过程,为限制二氧化碳排放铺平了一条具有成本效益的道路。催化剂和吸收剂之间的相互作用被认为在 ICCU 中起着关键作用;然而,在工业应用中缺乏制造这种相互作用的环境友好型策略。在此,我们提出了一种无溶剂机械化学方法,通过改善天然钙源和铁源之间的接近度来促进相互作用。我们使用 XRD、XPS、TEM、TPR 等对相互作用进行了系统研究和确认。结果,机械化学方法衍生出的 DFM 在 650 °C 下实现了 5.5 mmol/g 的二氧化碳容量、87 % 的二氧化碳转化率和 100 % 的二氧化碳选择性,明显优于单独使用 CaO 的基准(二氧化碳容量为 4.5 mmol/g,二氧化碳转化率为 73 %)。进一步加入氧化镁可缓解烧结,并通过作为热稳定屏障提高二氧化碳捕获稳定性(20 次循环后降低 15%)。根据原位 XRD,进一步证实了铁-钙相互作用在 ICCU 中呈现出一种动态循环机制。技术经济分析有力地证明了天然来源的 DFMs 催化的 ICCU 在消除二氧化碳捕获和升级的能源和 H2 消耗方面的优越性。因此,与传统的 CCU 和仅使用 CaO 的 ICCU 方案相比,使用机械化学衍生的 DFM 通过 ICCU 生产 CO 的成本分别降低了 20% 和 10%,这表明了 ICCU 技术在工业应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Hydroxyl-anchored monomer self-orientation enables angstrom-scale precision in polyamide nanofiltration membranes Microstructural design and control of funnel-like PES microfiltration membranes via the coupled RTIPS-VIPS technology ZIF-8-interlayer-based thin-film nanocomposite membranes for enhanced enrichment of traditional Chinese medicine hydrolates In situ characterization techniques for electrocatalytic processes: Latest progress in aqueous environments Polymer-controlled interfacial structure modulates electron efficiency and stability of sulfidated nanoscale zero-valent iron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1