Self-acceleration effect of Mn/Ce-modified carbide slag in CO2 absorption for CaO/CaCO3 energy storage

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2024-10-23 DOI:10.1016/j.seppur.2024.130153
Yi Fang , Yingjie Li , Youhao Zhang , Yuzhuo Wang , Kuihua Han , Rongyue Sun , Jun Jie Wu
{"title":"Self-acceleration effect of Mn/Ce-modified carbide slag in CO2 absorption for CaO/CaCO3 energy storage","authors":"Yi Fang ,&nbsp;Yingjie Li ,&nbsp;Youhao Zhang ,&nbsp;Yuzhuo Wang ,&nbsp;Kuihua Han ,&nbsp;Rongyue Sun ,&nbsp;Jun Jie Wu","doi":"10.1016/j.seppur.2024.130153","DOIUrl":null,"url":null,"abstract":"<div><div>Carbide slag, a solid waste from the chlor-alkali industry, can be used for CO<sub>2</sub> capture and energy storage. Herein, the cyclic reaction activity of Mn/Ce-modified carbide slag under energy storage conditions was studied. The Mn/Ce-modified carbide slag shows energy storage density over 2100 kJ/kg and CO<sub>2</sub> absorption capacity of 0.52 g CO<sub>2</sub>/g sorbent after 30 cycles. Notably, both carbonation and calcination rates are accelerated with the number of cycles. This self-acceleration effect is related to the evolution of oxygen vacancy concentration and texture structure of Mn/Ce-modified carbide slag during the cycles. In the cycles, CaMnO<sub>3</sub> in the Mn/Ce-modified carbide slag reacts with the formed CaCO<sub>3</sub> in the carbonation stage to produce more Ca<sub>2</sub>MnO<sub>4</sub>. The formation of Ca<sub>2</sub>MnO<sub>4</sub> increases oxygen vacancies in the Mn/Ce-modified carbide slag, significantly enhancing its CO<sub>2</sub> absorption capacity. Thus, the release of the increased CO<sub>2</sub> in the calcination stage generates more pores in the 10–100 nm diameter range in the modified carbide slag, facilitating rapid carbonation. Thus, the Mn/Ce-modified carbide slag exhibits good prospect for CaO/CaCO<sub>3</sub> thermochemical energy storage.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"357 ","pages":"Article 130153"},"PeriodicalIF":9.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586624038929","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbide slag, a solid waste from the chlor-alkali industry, can be used for CO2 capture and energy storage. Herein, the cyclic reaction activity of Mn/Ce-modified carbide slag under energy storage conditions was studied. The Mn/Ce-modified carbide slag shows energy storage density over 2100 kJ/kg and CO2 absorption capacity of 0.52 g CO2/g sorbent after 30 cycles. Notably, both carbonation and calcination rates are accelerated with the number of cycles. This self-acceleration effect is related to the evolution of oxygen vacancy concentration and texture structure of Mn/Ce-modified carbide slag during the cycles. In the cycles, CaMnO3 in the Mn/Ce-modified carbide slag reacts with the formed CaCO3 in the carbonation stage to produce more Ca2MnO4. The formation of Ca2MnO4 increases oxygen vacancies in the Mn/Ce-modified carbide slag, significantly enhancing its CO2 absorption capacity. Thus, the release of the increased CO2 in the calcination stage generates more pores in the 10–100 nm diameter range in the modified carbide slag, facilitating rapid carbonation. Thus, the Mn/Ce-modified carbide slag exhibits good prospect for CaO/CaCO3 thermochemical energy storage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 CaO/CaCO3 储能的 Mn/Ce 改性碳化物炉渣在吸收 CO2 过程中的自加速效应
电石渣是氯碱工业的一种固体废弃物,可用于二氧化碳捕集和储能。本文研究了 Mn/Ce 改性电石渣在储能条件下的循环反应活性。经过 30 次循环后,锰/铈改性电石渣的储能密度超过 2100 kJ/kg,二氧化碳吸收能力达到 0.52 g CO2/g。值得注意的是,随着循环次数的增加,碳化和煅烧速度都会加快。这种自加速效应与循环过程中 Mn/Ce 改性硬质合金渣的氧空位浓度和质地结构的演变有关。在循环过程中,Mn/Ce 改性硬质合金渣中的 CaMnO3 与碳化阶段形成的 CaCO3 反应,生成更多的 Ca2MnO4。Ca2MnO4 的形成增加了 Mn/Ce 改性硬质合金渣中的氧空位,显著提高了其二氧化碳吸附能力。因此,在煅烧阶段,增加的二氧化碳释放会在改性硬质合金炉渣中产生更多直径在 10-100 纳米范围内的孔隙,从而促进快速碳化。因此,Mn/Ce 改性硬质合金炉渣具有良好的 CaO/CaCO3 热化学储能前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Insights into sulfur resistance of Ce-doped CaO in sorption-enhanced steam gasification: A combined DFT and experimental study Composite solute washing enhanced asymmetrical alternating current electrochemistry for efficient decontamination of heavy metals in dewatered sludge Emulsion-templated porous alginate shells enable enhanced CO₂ uptake and faster uptake–release in ionic-liquid microcapsules Chitosan-coal gasification slag-based umbrella-inspired interlocking micro-reactor for uranium-containing wastewater treatment Cobalt hydroxide nanosheets decorated with nanoscale zero-valent copper: dual functionality for U(VI) adsorption and reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1