Adrianna M. Turner, Lucy Li, Ian R. Monk, Jean Y. H. Lee, Danielle J. Ingle, Stephanie Portelli, Norelle L. Sherry, Nicole Isles, Torsten Seemann, Liam K. Sharkey, Calum J. Walsh, Gavin E. Reid, Shuai Nie, Bart A. Eijkelkamp, Natasha E. Holmes, Brennan Collis, Sara Vogrin, Andreas Hiergeist, Daniela Weber, Andre Gessner, Ernst Holler, David B. Ascher, Sebastian Duchene, Nichollas E. Scott, Timothy P. Stinear, Jason C. Kwong, Claire L. Gorrie, Benjamin P. Howden, Glen P. Carter
{"title":"Rifaximin prophylaxis causes resistance to the last-resort antibiotic daptomycin","authors":"Adrianna M. Turner, Lucy Li, Ian R. Monk, Jean Y. H. Lee, Danielle J. Ingle, Stephanie Portelli, Norelle L. Sherry, Nicole Isles, Torsten Seemann, Liam K. Sharkey, Calum J. Walsh, Gavin E. Reid, Shuai Nie, Bart A. Eijkelkamp, Natasha E. Holmes, Brennan Collis, Sara Vogrin, Andreas Hiergeist, Daniela Weber, Andre Gessner, Ernst Holler, David B. Ascher, Sebastian Duchene, Nichollas E. Scott, Timothy P. Stinear, Jason C. Kwong, Claire L. Gorrie, Benjamin P. Howden, Glen P. Carter","doi":"10.1038/s41586-024-08095-4","DOIUrl":null,"url":null,"abstract":"<p>Multidrug-resistant bacterial pathogens like vancomycin-resistant <i>Enterococcus faecium</i> (VREfm) are a critical threat to human health<sup>1</sup>. Daptomycin is a last-resort antibiotic for VREfm infections with a novel mode of action<sup>2</sup>, but for which resistance has been widely reported but is unexplained. Here we show that rifaximin, an unrelated antibiotic used prophylactically to prevent hepatic encephalopathy in patients with liver disease<sup>3</sup>, causes cross-resistance to daptomycin in VREfm. Amino acid changes arising within the bacterial RNA polymerase in response to rifaximin exposure cause upregulation of a previously uncharacterized operon (<i>prdRAB</i>) that leads to cell membrane remodelling and cross-resistance to daptomycin through reduced binding of the antibiotic. VREfm with these mutations are spread globally, making this a major mechanism of resistance. Rifaximin has been considered ‘low risk’ for the development of antibiotic resistance. Our study shows that this assumption is flawed and that widespread rifaximin use, particularly in patients with liver cirrhosis, may be compromising the clinical use of daptomycin, a major last-resort intervention for multidrug-resistant pathogens. These findings demonstrate how unanticipated antibiotic cross-resistance can undermine global strategies designed to preserve the clinical use of critical antibiotics.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08095-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multidrug-resistant bacterial pathogens like vancomycin-resistant Enterococcus faecium (VREfm) are a critical threat to human health1. Daptomycin is a last-resort antibiotic for VREfm infections with a novel mode of action2, but for which resistance has been widely reported but is unexplained. Here we show that rifaximin, an unrelated antibiotic used prophylactically to prevent hepatic encephalopathy in patients with liver disease3, causes cross-resistance to daptomycin in VREfm. Amino acid changes arising within the bacterial RNA polymerase in response to rifaximin exposure cause upregulation of a previously uncharacterized operon (prdRAB) that leads to cell membrane remodelling and cross-resistance to daptomycin through reduced binding of the antibiotic. VREfm with these mutations are spread globally, making this a major mechanism of resistance. Rifaximin has been considered ‘low risk’ for the development of antibiotic resistance. Our study shows that this assumption is flawed and that widespread rifaximin use, particularly in patients with liver cirrhosis, may be compromising the clinical use of daptomycin, a major last-resort intervention for multidrug-resistant pathogens. These findings demonstrate how unanticipated antibiotic cross-resistance can undermine global strategies designed to preserve the clinical use of critical antibiotics.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).