Jozefien Declercq, Sarah Gerlo, Sharon Van Nevel, Natalie De Ruyck, Gabriele Holtappels, Liesbeth Delesie, Els Tobback, Inés Lammens, Nikita Gerebtsov, Koen Sedeyn, Xavier Saelens, Bart N. Lambrecht, Philippe Gevaert, Linos Vandekerckhove, Stijn Vanhee
{"title":"Repeated COVID-19 mRNA-based vaccination contributes to SARS-CoV-2 neutralizing antibody responses in the mucosa","authors":"Jozefien Declercq, Sarah Gerlo, Sharon Van Nevel, Natalie De Ruyck, Gabriele Holtappels, Liesbeth Delesie, Els Tobback, Inés Lammens, Nikita Gerebtsov, Koen Sedeyn, Xavier Saelens, Bart N. Lambrecht, Philippe Gevaert, Linos Vandekerckhove, Stijn Vanhee","doi":"10.1126/scitranslmed.adn2364","DOIUrl":null,"url":null,"abstract":"<div >To prevent infection by respiratory viruses and consequently limit virus circulation, vaccines need to promote mucosal immunity. The extent to which the currently used messenger RNA (mRNA)–based COVID-19 vaccines induce mucosal immunity remains poorly characterized. We evaluated mucosal neutralizing antibody responses in a cohort of 183 individuals. Participants were sampled at several time points after primary adenovirus vector–based or mRNA-based COVID-19 vaccination and after mRNA-based booster vaccinations. Our findings revealed that repeated vaccination with mRNA boosters promoted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies in nasal secretions. Nasal and serum neutralizing antibody titers of both IgG and IgA isotypes correlated to one another. We investigated the source of these mucosal antibodies in a mouse model wherein mice received repeated mRNA vaccines for SARS-CoV-2. These experiments indicated that neutralizing antibody–producing cells reside in the spleen and bone marrow, whereas no proof of tissue homing to the respiratory mucosa was observed, despite the detection of mucosal antibodies. Serum transfer experiments confirmed that circulating antibodies were able to migrate to the respiratory mucosa. Collectively, these results demonstrate that, especially upon repeated vaccination, the currently used COVID-19 mRNA vaccines can elicit mucosal neutralizing antibodies and that vaccination might also stimulate mucosal immunity induced by previous SARS-CoV-2 infection. Moreover, migration of circulating antibodies to the respiratory mucosa might be a main mechanism. These findings advance our understanding of mRNA vaccine–induced immunity and have implications for the design of vaccine strategies to combat respiratory infections.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adn2364","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To prevent infection by respiratory viruses and consequently limit virus circulation, vaccines need to promote mucosal immunity. The extent to which the currently used messenger RNA (mRNA)–based COVID-19 vaccines induce mucosal immunity remains poorly characterized. We evaluated mucosal neutralizing antibody responses in a cohort of 183 individuals. Participants were sampled at several time points after primary adenovirus vector–based or mRNA-based COVID-19 vaccination and after mRNA-based booster vaccinations. Our findings revealed that repeated vaccination with mRNA boosters promoted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies in nasal secretions. Nasal and serum neutralizing antibody titers of both IgG and IgA isotypes correlated to one another. We investigated the source of these mucosal antibodies in a mouse model wherein mice received repeated mRNA vaccines for SARS-CoV-2. These experiments indicated that neutralizing antibody–producing cells reside in the spleen and bone marrow, whereas no proof of tissue homing to the respiratory mucosa was observed, despite the detection of mucosal antibodies. Serum transfer experiments confirmed that circulating antibodies were able to migrate to the respiratory mucosa. Collectively, these results demonstrate that, especially upon repeated vaccination, the currently used COVID-19 mRNA vaccines can elicit mucosal neutralizing antibodies and that vaccination might also stimulate mucosal immunity induced by previous SARS-CoV-2 infection. Moreover, migration of circulating antibodies to the respiratory mucosa might be a main mechanism. These findings advance our understanding of mRNA vaccine–induced immunity and have implications for the design of vaccine strategies to combat respiratory infections.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.