Adriano E. Reimer, Evan M. Dastin-van Rijn, Jaejoong Kim, Megan E. Mensinger, Elizabeth M. Sachse, Aaron Wald, Eric Hoskins, Kartikeya Singh, Abigail Alpers, Dawson Cooper, Meng-Chen Lo, Amanda Ribeiro de Oliveira, Gregory Simandl, Nathaniel Stephenson, Alik S. Widge
{"title":"Striatal stimulation enhances cognitive control and evidence processing in rodents and humans","authors":"Adriano E. Reimer, Evan M. Dastin-van Rijn, Jaejoong Kim, Megan E. Mensinger, Elizabeth M. Sachse, Aaron Wald, Eric Hoskins, Kartikeya Singh, Abigail Alpers, Dawson Cooper, Meng-Chen Lo, Amanda Ribeiro de Oliveira, Gregory Simandl, Nathaniel Stephenson, Alik S. Widge","doi":"10.1126/scitranslmed.adp1723","DOIUrl":null,"url":null,"abstract":"Brain disorders, in particular mental disorders, might be effectively treated by direct electrical brain stimulation, but clinical progress requires understanding of therapeutic mechanisms. Animal models have not helped, because there are no direct animal models of mental illness. Here, we propose a potential path past this roadblock, by leveraging a common ingredient of most mental disorders: impaired cognitive control. We previously showed that deep brain stimulation (DBS) improves cognitive control in humans. We now reverse translate that result using a set-shifting task in rats. DBS-like stimulation of the midstriatum improved reaction times without affecting accuracy, mirroring our human findings. Impulsivity, motivation, locomotor, and learning effects were ruled out through companion tasks and model-based analyses. To identify the specific cognitive processes affected, we applied reinforcement learning drift-diffusion modeling. This approach revealed that DBS-like stimulation enhanced evidence accumulation rates and lowered decision thresholds, improving domain-general cognitive control. Reanalysis of prior human data showed that the same mechanism applies in humans. This reverse/forward translational model could have near-term implications for clinical DBS practice and future trial design.","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"23 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/scitranslmed.adp1723","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Brain disorders, in particular mental disorders, might be effectively treated by direct electrical brain stimulation, but clinical progress requires understanding of therapeutic mechanisms. Animal models have not helped, because there are no direct animal models of mental illness. Here, we propose a potential path past this roadblock, by leveraging a common ingredient of most mental disorders: impaired cognitive control. We previously showed that deep brain stimulation (DBS) improves cognitive control in humans. We now reverse translate that result using a set-shifting task in rats. DBS-like stimulation of the midstriatum improved reaction times without affecting accuracy, mirroring our human findings. Impulsivity, motivation, locomotor, and learning effects were ruled out through companion tasks and model-based analyses. To identify the specific cognitive processes affected, we applied reinforcement learning drift-diffusion modeling. This approach revealed that DBS-like stimulation enhanced evidence accumulation rates and lowered decision thresholds, improving domain-general cognitive control. Reanalysis of prior human data showed that the same mechanism applies in humans. This reverse/forward translational model could have near-term implications for clinical DBS practice and future trial design.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.