Regulation of the Built-In Electric Fields of MIL-125(Ti)@Ti-Ce-MOF Yolk-Shell Z-Scheme Heterojunctions via Ligand Defects Toward Optimized Photocatalytic Performances

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-23 DOI:10.1002/adfm.202416556
Tingting Hu, Panpan Feng, Hongqi Chu, Xuepeng Wang, Fusheng Liu, Wei Zhou
{"title":"Regulation of the Built-In Electric Fields of MIL-125(Ti)@Ti-Ce-MOF Yolk-Shell Z-Scheme Heterojunctions via Ligand Defects Toward Optimized Photocatalytic Performances","authors":"Tingting Hu,&nbsp;Panpan Feng,&nbsp;Hongqi Chu,&nbsp;Xuepeng Wang,&nbsp;Fusheng Liu,&nbsp;Wei Zhou","doi":"10.1002/adfm.202416556","DOIUrl":null,"url":null,"abstract":"<p>The controllable formation of a built-in electric field (IEF) can effectively separate photogenerated electrons and holes and optimize the band structure of a material, thus improving its photocatalytic performance. Here, a novel type of defective metal-organic framework (MOF), i.e., an MIL-125(Ti)@Ti-Ce-MOF yolk-shell Z-scheme heterojunction, is synthesized using a simple ion-etching-coupled reconstruction method. By controlling the concentration of ligand defects within the MOF heterojunction, the strength of the IEF within the heterojunction can be effectively regulated. Moreover, the experimental and theoretical results demonstrated that ligand defects within the Z-scheme heterojunction structure can enhance the efficiency of photogenerated carrier separation and improve the transport capacity by regulating the IEF. The photocatalytic tetracycline (TC) degradation performance of the resultant MIL-125(Ti)@Ti-Ce-MOF yolk-shell heterojunction is ≈52.5- and 5.5-fold higher than those of Ti-Ce-MOF and MIL-125(Ti), respectively, indicating the efficient spatial charge separation due to the enhanced IEF. This study reveals the precise control of the IEF over the MIL-125(Ti)@Ti-Ce-MOF yolk-shell Z-scheme heterojunction, elucidating the relationship between the IEF and ligand defect concentration and promoting the photocatalytic performances of MOF@MOF-based catalysts via density functional theory and related experiments.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 10","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202416556","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The controllable formation of a built-in electric field (IEF) can effectively separate photogenerated electrons and holes and optimize the band structure of a material, thus improving its photocatalytic performance. Here, a novel type of defective metal-organic framework (MOF), i.e., an MIL-125(Ti)@Ti-Ce-MOF yolk-shell Z-scheme heterojunction, is synthesized using a simple ion-etching-coupled reconstruction method. By controlling the concentration of ligand defects within the MOF heterojunction, the strength of the IEF within the heterojunction can be effectively regulated. Moreover, the experimental and theoretical results demonstrated that ligand defects within the Z-scheme heterojunction structure can enhance the efficiency of photogenerated carrier separation and improve the transport capacity by regulating the IEF. The photocatalytic tetracycline (TC) degradation performance of the resultant MIL-125(Ti)@Ti-Ce-MOF yolk-shell heterojunction is ≈52.5- and 5.5-fold higher than those of Ti-Ce-MOF and MIL-125(Ti), respectively, indicating the efficient spatial charge separation due to the enhanced IEF. This study reveals the precise control of the IEF over the MIL-125(Ti)@Ti-Ce-MOF yolk-shell Z-scheme heterojunction, elucidating the relationship between the IEF and ligand defect concentration and promoting the photocatalytic performances of MOF@MOF-based catalysts via density functional theory and related experiments.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过配体缺陷调节 MIL-125(Ti)@Ti-Ce-MOF 卵黄壳 Z 型异质结的内置电场,以实现优化的光催化性能
可控内置电场(IEF)的形成可以有效分离光生电子和空穴,优化材料的能带结构,从而提高其光催化性能。本文采用简单的离子蚀刻耦合重构方法合成了一种新型的有缺陷金属有机框架(MOF),即 MIL-125(Ti)@Ti-Ce-MOF卵壳 Z 型异质结。通过控制 MOF 异质结内配体缺陷的浓度,可以有效调节异质结内 IEF 的强度。此外,实验和理论结果表明,Z 型异质结结构中的配体缺陷可以通过调节 IEF 来提高光生载流子的分离效率和传输能力。由此得到的 MIL-125(Ti)@Ti-Ce-MOF卵壳异质结的光催化四环素(TC)降解性能分别比 Ti-Ce-MOF 和 MIL-125(Ti)高出≈52.5 倍和 5.5 倍,表明 IEF 的增强带来了高效的空间电荷分离。该研究通过密度泛函理论和相关实验,揭示了 MIL-125(Ti)@Ti-Ce-MOF 卵黄壳 Z 型异质结的 IEF 的精确控制,阐明了 IEF 与配体缺陷浓度之间的关系,促进了 MOF@MOF 基催化剂光催化性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Issue Information Stepwise Vacancy Manipulation for Optimized Carrier Concentration and Blocked Phonon Transport Realizing Record High Figure of Merit zT in CuInTe2 Evidence for Topological States and a Lifshitz Transition in Metastable 2M-WSe2 Advancements in Functionalizable Metal-Organic Frameworks for Flexible Sensing Electronics Nonvolatile Memristor Based on WS2/WSe2 van der Waals Heterostructure with Tunable Interlayer Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1