Yuhua Liu , Wei Zhang , Xu Zou , Yan Yan , Qing Liang , Fuxi Liu , Wenwen Li , Kexin Song , Xinyan Zhou , Zhongjun Chen , Weitao Zheng
{"title":"MXene quantum dots-Co(OH)2 heterojunction stimulated Co2+δ sites for boosted alkaline hydrogen evolution","authors":"Yuhua Liu , Wei Zhang , Xu Zou , Yan Yan , Qing Liang , Fuxi Liu , Wenwen Li , Kexin Song , Xinyan Zhou , Zhongjun Chen , Weitao Zheng","doi":"10.1016/j.actamat.2024.120507","DOIUrl":null,"url":null,"abstract":"<div><div>Persevering structural stability of the active species after phase reconfiguration poses a key challenge for various sustainable catalytic systems. In this study, we construct a robust β-Co(OH)<sub>2</sub> electrocatalyst via self-adaptive coordination of MXene quantum dots (MQDs) during phase transition from the Co<sub>2</sub>(OH)<sub>3</sub>Cl precursor to β-Co(OH)<sub>2</sub> (MQDs/β-Co(OH)<sub>2</sub>/Co foam). The heterojunction induced the excellent electron transfer, causing the lattice strain of β-Co(OH)<sub>2</sub>, and the accumulated electrons at the MQDs end regulated the electronic density of Co sites (Co<sup>2+δ</sup>), reversing the structural instability of β-Co(OH)<sub>2</sub> within the applied reduction potential range. Furthermore, density functional theory calculation confirms the role of well-matched heterogeneous interfaces in HER. The result shows the high-valance Co<sup>2+δ</sup> sites promote adsorption and dissociation of H<sub>2</sub>O, increasing proton supply and accelerating reaction rate. Concurrently, MQDs facilitate the adsorption of hydrogen intermediates and H<sub>2</sub> generation. Our architected catalyst exhibited exceptional alkaline hydrogen evolution reactions (HERs) performance (91 mV@10 mA cm<sup>−2</sup>) and superior stability outperforms most reported β-Co(OH) <sub>2</sub>-based catalysts. Our work demonstrates the efficacy of MQDs as co-catalysts in enhancing the activity and structural stability of catalysts.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120507"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008565","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Persevering structural stability of the active species after phase reconfiguration poses a key challenge for various sustainable catalytic systems. In this study, we construct a robust β-Co(OH)2 electrocatalyst via self-adaptive coordination of MXene quantum dots (MQDs) during phase transition from the Co2(OH)3Cl precursor to β-Co(OH)2 (MQDs/β-Co(OH)2/Co foam). The heterojunction induced the excellent electron transfer, causing the lattice strain of β-Co(OH)2, and the accumulated electrons at the MQDs end regulated the electronic density of Co sites (Co2+δ), reversing the structural instability of β-Co(OH)2 within the applied reduction potential range. Furthermore, density functional theory calculation confirms the role of well-matched heterogeneous interfaces in HER. The result shows the high-valance Co2+δ sites promote adsorption and dissociation of H2O, increasing proton supply and accelerating reaction rate. Concurrently, MQDs facilitate the adsorption of hydrogen intermediates and H2 generation. Our architected catalyst exhibited exceptional alkaline hydrogen evolution reactions (HERs) performance (91 mV@10 mA cm−2) and superior stability outperforms most reported β-Co(OH) 2-based catalysts. Our work demonstrates the efficacy of MQDs as co-catalysts in enhancing the activity and structural stability of catalysts.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.