Subclassification of obesity for precision prediction of cardiometabolic diseases

Daniel E. Coral, Femke Smit, Ali Farzaneh, Alexander Gieswinkel, Juan Fernandez Tajes, Thomas Sparsø, Carl Delfin, Pierre Bauvain, Kan Wang, Marinella Temprosa, Diederik De Cock, Jordi Blanch, José Manuel Fernández-Real, Rafael Ramos, M. Kamran Ikram, Maria F. Gomez, Maryam Kavousi, Marina Panova-Noeva, Philipp S. Wild, Carla van der Kallen, Michiel Adriaens, Marleen van Greevenbroek, Ilja Arts, Carel Le Roux, Fariba Ahmadizar, Timothy M. Frayling, Giuseppe N. Giordano, Ewan R. Pearson, Paul W. Franks
{"title":"Subclassification of obesity for precision prediction of cardiometabolic diseases","authors":"Daniel E. Coral, Femke Smit, Ali Farzaneh, Alexander Gieswinkel, Juan Fernandez Tajes, Thomas Sparsø, Carl Delfin, Pierre Bauvain, Kan Wang, Marinella Temprosa, Diederik De Cock, Jordi Blanch, José Manuel Fernández-Real, Rafael Ramos, M. Kamran Ikram, Maria F. Gomez, Maryam Kavousi, Marina Panova-Noeva, Philipp S. Wild, Carla van der Kallen, Michiel Adriaens, Marleen van Greevenbroek, Ilja Arts, Carel Le Roux, Fariba Ahmadizar, Timothy M. Frayling, Giuseppe N. Giordano, Ewan R. Pearson, Paul W. Franks","doi":"10.1038/s41591-024-03299-7","DOIUrl":null,"url":null,"abstract":"<p>Obesity and cardiometabolic disease often, but not always, coincide. Distinguishing subpopulations within which cardiometabolic risk diverges from the risk expected for a given body mass index (BMI) may facilitate precision prevention of cardiometabolic diseases. Accordingly, we performed unsupervised clustering in four European population-based cohorts (<i>N</i> ≈ 173,000). We detected five discordant profiles consisting of individuals with cardiometabolic biomarkers higher or lower than expected given their BMI, which generally increases disease risk, in total representing ~20% of the total population. Persons with discordant profiles differed from concordant individuals in prevalence and future risk of major adverse cardiovascular events (MACE) and type 2 diabetes. Subtle BMI-discordances in biomarkers affected disease risk. For instance, a 10% higher probability of having a discordant lipid profile was associated with a 5% higher risk of MACE (hazard ratio in women 1.05, 95% confidence interval 1.03, 1.06, <i>P</i> = 4.19 × 10<sup>−10</sup>; hazard ratio in men 1.05, 95% confidence interval 1.04, 1.06, <i>P</i> = 9.33 × 10<sup>−14</sup>). Multivariate prediction models for MACE and type 2 diabetes performed better when incorporating discordant profile information (likelihood ratio test <i>P</i> &lt; 0.001). This enhancement represents an additional net benefit of 4−15 additional correct interventions and 37−135 additional unnecessary interventions correctly avoided for every 10,000 individuals tested.</p>","PeriodicalId":58,"journal":{"name":"The Journal of Physical Chemistry ","volume":"143 1","pages":""},"PeriodicalIF":2.7810,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry ","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-024-03299-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity and cardiometabolic disease often, but not always, coincide. Distinguishing subpopulations within which cardiometabolic risk diverges from the risk expected for a given body mass index (BMI) may facilitate precision prevention of cardiometabolic diseases. Accordingly, we performed unsupervised clustering in four European population-based cohorts (N ≈ 173,000). We detected five discordant profiles consisting of individuals with cardiometabolic biomarkers higher or lower than expected given their BMI, which generally increases disease risk, in total representing ~20% of the total population. Persons with discordant profiles differed from concordant individuals in prevalence and future risk of major adverse cardiovascular events (MACE) and type 2 diabetes. Subtle BMI-discordances in biomarkers affected disease risk. For instance, a 10% higher probability of having a discordant lipid profile was associated with a 5% higher risk of MACE (hazard ratio in women 1.05, 95% confidence interval 1.03, 1.06, P = 4.19 × 10−10; hazard ratio in men 1.05, 95% confidence interval 1.04, 1.06, P = 9.33 × 10−14). Multivariate prediction models for MACE and type 2 diabetes performed better when incorporating discordant profile information (likelihood ratio test P < 0.001). This enhancement represents an additional net benefit of 4−15 additional correct interventions and 37−135 additional unnecessary interventions correctly avoided for every 10,000 individuals tested.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对肥胖进行亚分类,精准预测心脏代谢疾病
肥胖和心脏代谢疾病经常同时发生,但并非总是如此。区分哪些亚人群的心脏代谢风险不同于特定体重指数(BMI)的预期风险,有助于精准预防心脏代谢疾病。因此,我们在四个欧洲人群队列(N ≈ 17.3 万)中进行了无监督聚类。我们发现了五种不一致的特征,其中一些人的心脏代谢生物标志物高于或低于其体重指数(体重指数通常会增加疾病风险)的预期值,总共占总人口的约 20%。在主要不良心血管事件(MACE)和 2 型糖尿病的发病率和未来风险方面,具有不一致特征的人与一致特征的人有所不同。生物标志物中微妙的 BMI 不一致会影响疾病风险。例如,血脂不一致的概率每增加 10%,MACE 风险就会增加 5%(女性的危险比为 1.05,95% 置信区间为 1.03,1.06,P = 4.19 × 10-10;男性的危险比为 1.05,95% 置信区间为 1.04,1.06,P = 9.33 × 10-14)。当纳入不一致的资料信息时,MACE 和 2 型糖尿病的多变量预测模型表现更好(似然比检验 P < 0.001)。这一改进代表着每 10000 名受测者可额外获得 4-15 次正确干预和 37-135 次不必要干预的净收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lipid signatures of cardiometabolic risk in children and adolescents with obesity Seven-year performance of a clinical metagenomic next-generation sequencing test for diagnosis of central nervous system infections H5N1 from an infected dairy worker sheds light on viral transmission TRBC1-CAR T cell therapy in peripheral T cell lymphoma: a phase 1/2 trial Moving toward response-adapted trials in oncology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1