Seven-year performance of a clinical metagenomic next-generation sequencing test for diagnosis of central nervous system infections

Patrick Benoit, Noah Brazer, Mikael de Lorenzi-Tognon, Emily Kelly, Venice Servellita, Miriam Oseguera, Jenny Nguyen, Jack Tang, Charles Omura, Jessica Streithorst, Melissa Hillberg, Danielle Ingebrigtsen, Kelsey Zorn, Michael R. Wilson, Tim Blicharz, Amy P. Wong, Brian O’Donovan, Brad Murray, Steve Miller, Charles Y. Chiu
{"title":"Seven-year performance of a clinical metagenomic next-generation sequencing test for diagnosis of central nervous system infections","authors":"Patrick Benoit, Noah Brazer, Mikael de Lorenzi-Tognon, Emily Kelly, Venice Servellita, Miriam Oseguera, Jenny Nguyen, Jack Tang, Charles Omura, Jessica Streithorst, Melissa Hillberg, Danielle Ingebrigtsen, Kelsey Zorn, Michael R. Wilson, Tim Blicharz, Amy P. Wong, Brian O’Donovan, Brad Murray, Steve Miller, Charles Y. Chiu","doi":"10.1038/s41591-024-03275-1","DOIUrl":null,"url":null,"abstract":"<p>Metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) is an agnostic method for broad-based diagnosis of central nervous system (CNS) infections. Here we analyzed the 7-year performance of clinical CSF mNGS testing of 4,828 samples from June 2016 to April 2023 performed by the University of California, San Francisco (UCSF) clinical microbiology laboratory. Overall, mNGS testing detected 797 organisms from 697 (14.4%) of 4,828 samples, consisting of 363 (45.5%) DNA viruses, 211 (26.4%) RNA viruses, 132 (16.6%) bacteria, 68 (8.5%) fungi and 23 (2.9%) parasites. We also extracted clinical and laboratory metadata from a subset of the samples (<i>n</i> = 1,164) from 1,053 UCSF patients. Among the 220 infectious diagnoses in this subset, 48 (21.8%) were identified by mNGS alone. The sensitivity, specificity and accuracy of mNGS testing for CNS infections were 63.1%, 99.6% and 92.9%, respectively. mNGS testing exhibited higher sensitivity (63.1%) than indirect serologic testing (28.8%) and direct detection testing from both CSF (45.9%) and non-CSF (15.0%) samples (<i>P</i> &lt; 0.001 for all three comparisons). When only considering diagnoses made by CSF direct detection testing, the sensitivity of mNGS testing increased to 86%. These results justify the routine use of diagnostic mNGS testing for hospitalized patients with suspected CNS infection.</p>","PeriodicalId":58,"journal":{"name":"The Journal of Physical Chemistry ","volume":"7 1","pages":""},"PeriodicalIF":2.7810,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry ","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-024-03275-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) is an agnostic method for broad-based diagnosis of central nervous system (CNS) infections. Here we analyzed the 7-year performance of clinical CSF mNGS testing of 4,828 samples from June 2016 to April 2023 performed by the University of California, San Francisco (UCSF) clinical microbiology laboratory. Overall, mNGS testing detected 797 organisms from 697 (14.4%) of 4,828 samples, consisting of 363 (45.5%) DNA viruses, 211 (26.4%) RNA viruses, 132 (16.6%) bacteria, 68 (8.5%) fungi and 23 (2.9%) parasites. We also extracted clinical and laboratory metadata from a subset of the samples (n = 1,164) from 1,053 UCSF patients. Among the 220 infectious diagnoses in this subset, 48 (21.8%) were identified by mNGS alone. The sensitivity, specificity and accuracy of mNGS testing for CNS infections were 63.1%, 99.6% and 92.9%, respectively. mNGS testing exhibited higher sensitivity (63.1%) than indirect serologic testing (28.8%) and direct detection testing from both CSF (45.9%) and non-CSF (15.0%) samples (P < 0.001 for all three comparisons). When only considering diagnoses made by CSF direct detection testing, the sensitivity of mNGS testing increased to 86%. These results justify the routine use of diagnostic mNGS testing for hospitalized patients with suspected CNS infection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于诊断中枢神经系统感染的临床元基因组下一代测序检验的七年性能表现
脑脊液(CSF)的元基因组新一代测序(mNGS)是广泛诊断中枢神经系统(CNS)感染的不可知方法。在此,我们分析了加州大学旧金山分校(UCSF)临床微生物实验室从 2016 年 6 月到 2023 年 4 月对 4828 份样本进行临床 CSF mNGS 检测的 7 年绩效。总体而言,mNGS 检测从 4828 份样本中的 697 份(14.4%)样本中检测出 797 种生物,包括 363 种(45.5%)DNA 病毒、211 种(26.4%)RNA 病毒、132 种(16.6%)细菌、68 种(8.5%)真菌和 23 种(2.9%)寄生虫。我们还从加州大学旧金山分校 1053 名患者的样本子集(n = 1164)中提取了临床和实验室元数据。在该子集的 220 项感染性诊断中,有 48 项(21.8%)仅由 mNGS 鉴定。mNGS 检测对中枢神经系统感染的敏感性、特异性和准确性分别为 63.1%、99.6% 和 92.9%。mNGS 检测的敏感性(63.1%)高于间接血清学检测(28.8%),也高于 CSF(45.9%)和非 CSF(15.0%)样本的直接检测(三项比较的 P 均为 0.001)。如果只考虑 CSF 直接检测的诊断结果,mNGS 检测的灵敏度则提高到 86%。这些结果证明常规使用 mNGS 检测诊断疑似中枢神经系统感染的住院患者是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lipid signatures of cardiometabolic risk in children and adolescents with obesity Seven-year performance of a clinical metagenomic next-generation sequencing test for diagnosis of central nervous system infections H5N1 from an infected dairy worker sheds light on viral transmission TRBC1-CAR T cell therapy in peripheral T cell lymphoma: a phase 1/2 trial Moving toward response-adapted trials in oncology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1