Dong Hae Ho, Chenhao Hu, Ling Li, Michael D. Bartlett
{"title":"Soft electronic vias and interconnects through rapid three-dimensional assembly of liquid metal microdroplets","authors":"Dong Hae Ho, Chenhao Hu, Ling Li, Michael D. Bartlett","doi":"10.1038/s41928-024-01268-z","DOIUrl":null,"url":null,"abstract":"<p>The development of soft electronics requires methods to connect flexible and stretchable circuits. With conventional rigid electronics, vias are typically used to electrically connect circuits with multilayered architectures, increasing device integration and functionality. However, creating vias using soft conductors leads to additional challenges. Here we show that soft vias and planar interconnects can be created through the directed stratification of liquid metal droplets with programmed photocuring. Abnormalities that occur at the edges of a mask during ultraviolet exposure are leveraged to create vertical stair-like architectures of liquid metal droplets within the photoresin. The liquid metal droplets in the uncured (liquid) resin rapidly settle, assemble and then are fully cured, forming electrically conductive soft vias at multiple locations throughout the circuit in a parallel and spatially tunable manner. Our three-dimensional selective stratification method can also form seamless connections with planar interconnects, for in-plane and through-plane electrical integration.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01268-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The development of soft electronics requires methods to connect flexible and stretchable circuits. With conventional rigid electronics, vias are typically used to electrically connect circuits with multilayered architectures, increasing device integration and functionality. However, creating vias using soft conductors leads to additional challenges. Here we show that soft vias and planar interconnects can be created through the directed stratification of liquid metal droplets with programmed photocuring. Abnormalities that occur at the edges of a mask during ultraviolet exposure are leveraged to create vertical stair-like architectures of liquid metal droplets within the photoresin. The liquid metal droplets in the uncured (liquid) resin rapidly settle, assemble and then are fully cured, forming electrically conductive soft vias at multiple locations throughout the circuit in a parallel and spatially tunable manner. Our three-dimensional selective stratification method can also form seamless connections with planar interconnects, for in-plane and through-plane electrical integration.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.