Boosted Aluminum Storage Performance by d-p Orbital Modulation in Zinc Selenide with Manganese Element Dopants

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-10-24 DOI:10.1039/d4qi02173h
Han Wang, Rongkai Kang, Boya Zhang, Xingchang Zhang, Guowen Chen, Yiqun Du, Jian-Xin Zhang
{"title":"Boosted Aluminum Storage Performance by d-p Orbital Modulation in Zinc Selenide with Manganese Element Dopants","authors":"Han Wang, Rongkai Kang, Boya Zhang, Xingchang Zhang, Guowen Chen, Yiqun Du, Jian-Xin Zhang","doi":"10.1039/d4qi02173h","DOIUrl":null,"url":null,"abstract":"Transition metal chalcogenides (TMCs) are extensively employed as cathode materials for rechargeable aluminum batteries (RABs) due to their high theoretical specific capacity and voltage plateau. Although promising, practical applications are hindered by challenges such as inferior structure stability, slow reaction kinetics, and inadequate electronic conductivity. Herein, Mn-ion doping engineering and g-C3N4 etched porous carbon frameworks (Mn-ZnSe@CNPC) were integrated to synergistically enhance the electrochemical properties of ZnSe. Through modulating the center of the d- and p-band and regulating electronic interaction, Mn-ion doping enhances the adsorption for solvent groups and reduces electron transfer energy barriers, resulting in Mn-ZnSe@CNPC cathodes with high redox activity and fast reaction kinetics. In addition, the porous carbon nanocages act as support frameworks, preventing the agglomeration of ZnSe nanoparticles and providing ample ion transport channels, thus addressing issues related to poor cyclability and slow electrochemical kinetics in RABs. Benefiting from the d-p orbital modulation strategy and structural advantages, the tailored Mn-ZnSe@CNPC cathode exhibits boosted electrochemical performance and excellent stability.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02173h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal chalcogenides (TMCs) are extensively employed as cathode materials for rechargeable aluminum batteries (RABs) due to their high theoretical specific capacity and voltage plateau. Although promising, practical applications are hindered by challenges such as inferior structure stability, slow reaction kinetics, and inadequate electronic conductivity. Herein, Mn-ion doping engineering and g-C3N4 etched porous carbon frameworks (Mn-ZnSe@CNPC) were integrated to synergistically enhance the electrochemical properties of ZnSe. Through modulating the center of the d- and p-band and regulating electronic interaction, Mn-ion doping enhances the adsorption for solvent groups and reduces electron transfer energy barriers, resulting in Mn-ZnSe@CNPC cathodes with high redox activity and fast reaction kinetics. In addition, the porous carbon nanocages act as support frameworks, preventing the agglomeration of ZnSe nanoparticles and providing ample ion transport channels, thus addressing issues related to poor cyclability and slow electrochemical kinetics in RABs. Benefiting from the d-p orbital modulation strategy and structural advantages, the tailored Mn-ZnSe@CNPC cathode exhibits boosted electrochemical performance and excellent stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂锰元素的硒化锌中的 d-p 轨道调制提高铝存储性能
过渡金属瑀(TMCs)具有较高的理论比容量和电压高原,因此被广泛用作可充电铝电池(RABs)的阴极材料。尽管前景广阔,但结构稳定性差、反应动力学慢、电子导电性不足等问题阻碍了其实际应用。在此,锰离子掺杂工程与 g-C3N4 蚀刻多孔碳框架(Mn-ZnSe@CNPC)相结合,协同增强了 ZnSe 的电化学特性。通过调节 d 和 p 波段的中心和电子相互作用,掺杂 Mn 离子增强了对溶剂基团的吸附,降低了电子转移能垒,从而使 Mn-ZnSe@CNPC 阴极具有较高的氧化还原活性和较快的反应动力学。此外,多孔碳纳米笼还可作为支撑框架,防止 ZnSe 纳米颗粒团聚,并提供充足的离子传输通道,从而解决了 RAB 中循环性差和电化学动力学缓慢的相关问题。得益于 d-p 轨道调制策略和结构优势,定制的 Mn-ZnSe@CNPC 阴极表现出更高的电化学性能和出色的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1