FRET-Based Dual-Color Carbon Dot Ratiometric Fluorescent Sensor Enables the Smartphone-Integrated Device for Noninvasive and Portable Diagnosis of Chronic Kidney Disease
Mengyu Sun, Maosheng Liang, Rongmei Kong, Lan Guo, Lian Xia, Fengli Qu
{"title":"FRET-Based Dual-Color Carbon Dot Ratiometric Fluorescent Sensor Enables the Smartphone-Integrated Device for Noninvasive and Portable Diagnosis of Chronic Kidney Disease","authors":"Mengyu Sun, Maosheng Liang, Rongmei Kong, Lan Guo, Lian Xia, Fengli Qu","doi":"10.1021/acs.analchem.4c04813","DOIUrl":null,"url":null,"abstract":"Cystatin C (Cys C), a crucial renal disease marker for chronic kidney disease (CKD), plays a vital role in early diagnosis and treatment guidance. However, most current methods for detecting Cys C rely on a single signal and find it difficult to perform noninvasive and portable diagnosis. Here, we developed a ratiometric fluorescent carbon dot (CD) detection system for point-of-care testing (POCT) of Cys C through fluorescence resonance energy transfer (FRET). The detection is based on the hydrolysis effect of papain on a bovine serum albumin (BSA) scaffold and the specific inhibitory effect of Cys C on papain, endowing high-resolution color variance. Moreover, a low-cost, portable, yet reliable smartphone-assisted miniaturized device for real-time quantitative POCT of Cys C has been developed with a limit of detection (LOD) as low as 0.4 μg/mL. This sensing platform can effectively differentiate patients from healthy volunteers, which facilitates self-screening for healthy individuals and home monitoring for CKD patients.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"3 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04813","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cystatin C (Cys C), a crucial renal disease marker for chronic kidney disease (CKD), plays a vital role in early diagnosis and treatment guidance. However, most current methods for detecting Cys C rely on a single signal and find it difficult to perform noninvasive and portable diagnosis. Here, we developed a ratiometric fluorescent carbon dot (CD) detection system for point-of-care testing (POCT) of Cys C through fluorescence resonance energy transfer (FRET). The detection is based on the hydrolysis effect of papain on a bovine serum albumin (BSA) scaffold and the specific inhibitory effect of Cys C on papain, endowing high-resolution color variance. Moreover, a low-cost, portable, yet reliable smartphone-assisted miniaturized device for real-time quantitative POCT of Cys C has been developed with a limit of detection (LOD) as low as 0.4 μg/mL. This sensing platform can effectively differentiate patients from healthy volunteers, which facilitates self-screening for healthy individuals and home monitoring for CKD patients.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.