Process mining in mHealth data analysis

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-10-23 DOI:10.1038/s41746-024-01297-0
Michael Winter, Berthold Langguth, Winfried Schlee, Rüdiger Pryss
{"title":"Process mining in mHealth data analysis","authors":"Michael Winter, Berthold Langguth, Winfried Schlee, Rüdiger Pryss","doi":"10.1038/s41746-024-01297-0","DOIUrl":null,"url":null,"abstract":"This perspective article explores how process mining can extract clinical insights from mobile health data and complement data-driven techniques like machine learning. Despite technological advances, challenges such as selection bias and the complex dynamics of health data require advanced approaches. Process mining focuses on analyzing temporal process patterns and provides complementary insights into health condition variability. The article highlights the potential of process mining for analyzing mHealth data and beyond.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-10"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01297-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01297-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

This perspective article explores how process mining can extract clinical insights from mobile health data and complement data-driven techniques like machine learning. Despite technological advances, challenges such as selection bias and the complex dynamics of health data require advanced approaches. Process mining focuses on analyzing temporal process patterns and provides complementary insights into health condition variability. The article highlights the potential of process mining for analyzing mHealth data and beyond.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动医疗数据分析中的流程挖掘
这篇透视文章探讨了流程挖掘如何从移动医疗数据中提取临床见解,并对机器学习等数据驱动型技术进行补充。尽管技术在不断进步,但选择偏差和健康数据的复杂动态性等挑战仍需要先进的方法来应对。流程挖掘侧重于分析时间流程模式,并对健康状况的变化提供补充性见解。文章强调了流程挖掘在分析移动医疗数据及其他方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
A Novel method for quantifying fluctuations in wearable derived daily cardiovascular parameters across the menstrual cycle An umbrella review on how digital health intervention co-design is conducted and described Adaptive spatiotemporal encoding network for cognitive assessment using resting state EEG Human AI collaboration for unsupervised categorization of live surgical feedback Probabilistic medical predictions of large language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1