{"title":"Asynchronous decentralized traffic signal coordinated control in urban road network","authors":"Jichen Zhu, Chengyuan Ma, Yuqi Shi, Yanqing Yang, Yuzheng Guo, Xiaoguang Yang","doi":"10.1111/mice.13362","DOIUrl":null,"url":null,"abstract":"This study introduces an asynchronous decentralized coordinated signal control (ADCSC) framework for multi‐agent traffic signal control in the urban road network. The controller at each intersection in the network optimizes its signal control decisions based on a prediction of the future traffic demand as an independent agent. The asynchronous framework decouples the entangled interdependence between decision‐making and state prediction among different agents in decentralized coordinated decision‐making problems, enabling agents to proceed with collaborative decision‐making without waiting for other agents’ decisions. Within the proposed ADCSC framework, each controller dynamically optimizes its signal timing strategy with a unique rolling horizon scheme. The scheme's individualized parameters for each controller are determined based on the vehicle travel time between the adjacent intersections, ensuring that controllers can make informed control decisions with accurate arrival flow information from upstream intersections. The signal optimization problem is formulated as a mixed integer linear program model, which adopts a flexible signal scheme without a fixed phase structure and sequence. Simulation results demonstrate that the proposed ADCSC strategy significantly outperforms the benchmark signal coordination methods in terms of average delay, travel speed, stop numbers, and energy consumption. Experimental analysis on computation time validates the applicability of the proposed optimization model for real‐time implementation. Sensitivity analysis on key parameters in the framework is conducted, offering insights for parameter selection in practice. Furthermore, the ADCSC framework is extended to a road network in Qinzhou City, China, with 45 signalized intersections, demonstrating its effectiveness and scalability in the real‐world road network.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"34 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13362","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces an asynchronous decentralized coordinated signal control (ADCSC) framework for multi‐agent traffic signal control in the urban road network. The controller at each intersection in the network optimizes its signal control decisions based on a prediction of the future traffic demand as an independent agent. The asynchronous framework decouples the entangled interdependence between decision‐making and state prediction among different agents in decentralized coordinated decision‐making problems, enabling agents to proceed with collaborative decision‐making without waiting for other agents’ decisions. Within the proposed ADCSC framework, each controller dynamically optimizes its signal timing strategy with a unique rolling horizon scheme. The scheme's individualized parameters for each controller are determined based on the vehicle travel time between the adjacent intersections, ensuring that controllers can make informed control decisions with accurate arrival flow information from upstream intersections. The signal optimization problem is formulated as a mixed integer linear program model, which adopts a flexible signal scheme without a fixed phase structure and sequence. Simulation results demonstrate that the proposed ADCSC strategy significantly outperforms the benchmark signal coordination methods in terms of average delay, travel speed, stop numbers, and energy consumption. Experimental analysis on computation time validates the applicability of the proposed optimization model for real‐time implementation. Sensitivity analysis on key parameters in the framework is conducted, offering insights for parameter selection in practice. Furthermore, the ADCSC framework is extended to a road network in Qinzhou City, China, with 45 signalized intersections, demonstrating its effectiveness and scalability in the real‐world road network.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.