{"title":"Engineering of 2D MXene-derived nanocomposites for environment-related interdisciplinary applications","authors":"Zhenxi Yuan, Weirui Chen, Laisheng Li, Jing Wang","doi":"10.1016/j.jmst.2024.09.044","DOIUrl":null,"url":null,"abstract":"There is a booming scientific research community looking into two-dimensional (2D) MXenes with superior physical and chemical characteristics that are potentially applicable in many fields. However, compared to energy conversion and storage, their applications in environment remediation have received much less attention. Hence, this review summarizes the recent progress of 2D MXenes and their derivates adopted for interdisciplinary applications with a focus on environment-related areas, aiming at promoting the diversity of MXenes and providing a refreshing background. Firstly, the properties including excellent electrical conductivity (as high as 15,100 S cm<sup>−1</sup>), large surface area (100–1,000 m<sup>2</sup> g<sup>−1</sup>), tunable surface chemistry (-O, -OH or -F terminal groups), photothermal conversion (∼100 % light-to-heat efficiency) as well as kinetic and thermodynamic stability of 2D MXenes are briefly introduced. The engineering strategies of MXene-derived nanocomposites through the construction of heterostructures, metal/non-metal doping, the introduction of vacancies, strain engineering, and computation modelling are then followed. Finally, we emphasize current advances achieved in versatile applications including metal ions adsorption, photocatalytic organics degradation and CO<sub>2</sub> reduction, solar water desalination, oil/water separation, and gas sensing, where engineering, mechanisms, and performances of different 2D MXene derivates are discussed. It is envisioned that 2D MXenes will become one of the prominent nanomaterials effective for diverse applications in the years to come.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.09.044","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a booming scientific research community looking into two-dimensional (2D) MXenes with superior physical and chemical characteristics that are potentially applicable in many fields. However, compared to energy conversion and storage, their applications in environment remediation have received much less attention. Hence, this review summarizes the recent progress of 2D MXenes and their derivates adopted for interdisciplinary applications with a focus on environment-related areas, aiming at promoting the diversity of MXenes and providing a refreshing background. Firstly, the properties including excellent electrical conductivity (as high as 15,100 S cm−1), large surface area (100–1,000 m2 g−1), tunable surface chemistry (-O, -OH or -F terminal groups), photothermal conversion (∼100 % light-to-heat efficiency) as well as kinetic and thermodynamic stability of 2D MXenes are briefly introduced. The engineering strategies of MXene-derived nanocomposites through the construction of heterostructures, metal/non-metal doping, the introduction of vacancies, strain engineering, and computation modelling are then followed. Finally, we emphasize current advances achieved in versatile applications including metal ions adsorption, photocatalytic organics degradation and CO2 reduction, solar water desalination, oil/water separation, and gas sensing, where engineering, mechanisms, and performances of different 2D MXene derivates are discussed. It is envisioned that 2D MXenes will become one of the prominent nanomaterials effective for diverse applications in the years to come.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.