{"title":"Cosmic inflation and (g-2) μ in minimal gauged Lμ-Lτ model","authors":"Arnab Paul, Sourov Roy and Abhijit Kumar Saha","doi":"10.1088/1475-7516/2024/10/077","DOIUrl":null,"url":null,"abstract":"The minimal U(1)Lμ-Lτ gauge symmetry extended Standard Model (SM) is a well motivated framework that resolves the discrepancy between the theoretical prediction and experimental observation of muon anomalous magnetic moment. We envisage the possibility of identifying the beyond Standard Model Higgs of U(1)Lμ-Lτ sector, non-minimally coupled to gravity, as the inflaton in the early universe, while being consistent with the (g-2)μ data. Although the structure seems to be trivial, we observe that taking into consideration of a complete cosmological history starting from inflation through the reheating phase to late-time epoch along with existing constraints on U(1)Lμ-Lτ gauge symmetry extended Standard Model (SM) is a well motivated framework that resolves the discrepancy between the theoretical prediction and experimental observation of muon anomalous magnetic moment. We envisage the possibility of identifying the beyond Standard Model Higgs of U(1)LμLτ model parameters leave us a small window of allowed reheating temperature. This further results into restriction of (ns-r) plane which is far severe than the one in a generic non-minimal quartic inflationary set up.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/10/077","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The minimal U(1)Lμ-Lτ gauge symmetry extended Standard Model (SM) is a well motivated framework that resolves the discrepancy between the theoretical prediction and experimental observation of muon anomalous magnetic moment. We envisage the possibility of identifying the beyond Standard Model Higgs of U(1)Lμ-Lτ sector, non-minimally coupled to gravity, as the inflaton in the early universe, while being consistent with the (g-2)μ data. Although the structure seems to be trivial, we observe that taking into consideration of a complete cosmological history starting from inflation through the reheating phase to late-time epoch along with existing constraints on U(1)Lμ-Lτ gauge symmetry extended Standard Model (SM) is a well motivated framework that resolves the discrepancy between the theoretical prediction and experimental observation of muon anomalous magnetic moment. We envisage the possibility of identifying the beyond Standard Model Higgs of U(1)LμLτ model parameters leave us a small window of allowed reheating temperature. This further results into restriction of (ns-r) plane which is far severe than the one in a generic non-minimal quartic inflationary set up.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.