Ketones as ideal photocatalysts for decarboxylative fluorination and a competition with C(sp3)-H fluorination

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2024-10-24 DOI:10.1016/j.checat.2024.101162
Yu Zhang, Jiahui Qian, Miao Wang, Yahao Huang, Hansjörg Grützmacher, Peng Hu
{"title":"Ketones as ideal photocatalysts for decarboxylative fluorination and a competition with C(sp3)-H fluorination","authors":"Yu Zhang, Jiahui Qian, Miao Wang, Yahao Huang, Hansjörg Grützmacher, Peng Hu","doi":"10.1016/j.checat.2024.101162","DOIUrl":null,"url":null,"abstract":"Fluorinated molecules are widely used in drug discovery and materials science. However, the efficient construction of a C(sp<sup>3</sup>)–F bond from diverse carboxylic acids with a promising low-cost photocatalyst to replace expensive metal catalysts remains a significant challenge. Herein, we present a cost-effective, metal-free, and highly efficient photocatalytic approach for the direct decarboxylative fluorination of aliphatic carboxylic acids and diacids via photoexcited aliphatic ketones. This reaction (milligram to gram scale) can be achieved in just a few minutes with low-power irradiation using a broad range of wavelengths, spanning from visible to ultraviolet light. Our investigation revealed that photoexcited ketones, commonly employed as hydrogen atom transfer (HAT) catalysts for various C(sp<sup>3</sup>)–H bond functionalizations, exhibit a distinct preference for single-electron transfer (SET) in the decarboxylation of aliphatic carboxylic acids when combined with Selectfluor and Na<sub>2</sub>HPO<sub>4</sub>.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"41 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorinated molecules are widely used in drug discovery and materials science. However, the efficient construction of a C(sp3)–F bond from diverse carboxylic acids with a promising low-cost photocatalyst to replace expensive metal catalysts remains a significant challenge. Herein, we present a cost-effective, metal-free, and highly efficient photocatalytic approach for the direct decarboxylative fluorination of aliphatic carboxylic acids and diacids via photoexcited aliphatic ketones. This reaction (milligram to gram scale) can be achieved in just a few minutes with low-power irradiation using a broad range of wavelengths, spanning from visible to ultraviolet light. Our investigation revealed that photoexcited ketones, commonly employed as hydrogen atom transfer (HAT) catalysts for various C(sp3)–H bond functionalizations, exhibit a distinct preference for single-electron transfer (SET) in the decarboxylation of aliphatic carboxylic acids when combined with Selectfluor and Na2HPO4.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酮类作为理想的光催化剂用于脱羧氟化以及与 C(sp3)-H 氟化的竞争
氟化分子被广泛应用于药物研发和材料科学领域。然而,如何利用一种有前景的低成本光催化剂取代昂贵的金属催化剂,从不同的羧酸中高效构建 C(sp3)-F 键,仍然是一项重大挑战。在此,我们提出了一种经济、无金属、高效的光催化方法,通过光激发脂肪族酮直接对脂肪族羧酸和二元酸进行脱羧氟化反应。这种反应(毫克到克级)可在短短几分钟内通过使用从可见光到紫外线的宽波长范围的低功率照射实现。我们的研究发现,光激发酮通常用作氢原子转移(HAT)催化剂,用于各种 C(sp3)-H 键官能化,当与 Selectfluor 和 Na2HPO4 结合使用时,在脂肪族羧酸的脱羧反应中表现出明显的单电子转移(SET)偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
Reverse effect of metal-support interaction on platinum and iridium catalysts in ammonia selective oxidation Visualizing active species in CO2 electroreduction Key role of precatalyst composition and iron impurities in oxygen evolution reaction Enzymatic azide synthesis by ATP-dependent synthetase Visualizing the step bunching on Pt surfaces and its effect in electrocatalysis with EC-STM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1