Controllable Regulation of CO2 Adsorption Behavior via Precise Charge Donation Modulation for Highly Selective CO2 Electroreduction to Formic Acid

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-10-24 DOI:10.1002/smll.202408351
Rou-Yu Li, Wenyu Yuan, Shuo Wang, Peng Zhang, Heng Wu, Yi-Min Su, En-Lei Wen, Xiaolin Zhu, Quan-Guo Zhai
{"title":"Controllable Regulation of CO2 Adsorption Behavior via Precise Charge Donation Modulation for Highly Selective CO2 Electroreduction to Formic Acid","authors":"Rou-Yu Li, Wenyu Yuan, Shuo Wang, Peng Zhang, Heng Wu, Yi-Min Su, En-Lei Wen, Xiaolin Zhu, Quan-Guo Zhai","doi":"10.1002/smll.202408351","DOIUrl":null,"url":null,"abstract":"The synthesis of value-added products via CO<sub>2</sub> electroreduction (CO<sub>2</sub>ER) is of great significance, but the development of efficient and versatile strategies for the controllable selectivity tuning is extremely challenging. Herein, the tuning of CO<sub>2</sub>ER selectivity through the modulation of CO<sub>2</sub> adsorption behavior is proposed. Using the constructed zeolitic MOF (SNNU-339), CO<sub>2</sub> adsorption behavior is controllably changed from *CO<sub>2</sub> to CO<sub>2</sub>* via the precise ligand-to-metal charge donation (LTMCD) regulation. It is confirmed that the high electronegativity of the coordinate ligand directly restricts the LTMCD, reduces the charge density on the metal sites, lowers the Gibbs free energy for CO<sub>2</sub>* adsorption, and leads to the transformation of CO<sub>2</sub> adsorption mode from *CO<sub>2</sub> to CO<sub>2</sub>*. Owing to the modulated CO<sub>2</sub> adsorption behavior and regulated kinetics, SNNU-339 exhibits superior HCOOH selectivity (≈330% promotion, 85.6% Faradaic efficiency) and high CO<sub>2</sub>ER activity. The wide applicability of the proposed approach sheds light on the efficient CO<sub>2</sub>ER. This study provides a competitive strategy for rational catalyst design and underscores the significance of adsorption behavior tuning in electrocatalysis.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408351","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of value-added products via CO2 electroreduction (CO2ER) is of great significance, but the development of efficient and versatile strategies for the controllable selectivity tuning is extremely challenging. Herein, the tuning of CO2ER selectivity through the modulation of CO2 adsorption behavior is proposed. Using the constructed zeolitic MOF (SNNU-339), CO2 adsorption behavior is controllably changed from *CO2 to CO2* via the precise ligand-to-metal charge donation (LTMCD) regulation. It is confirmed that the high electronegativity of the coordinate ligand directly restricts the LTMCD, reduces the charge density on the metal sites, lowers the Gibbs free energy for CO2* adsorption, and leads to the transformation of CO2 adsorption mode from *CO2 to CO2*. Owing to the modulated CO2 adsorption behavior and regulated kinetics, SNNU-339 exhibits superior HCOOH selectivity (≈330% promotion, 85.6% Faradaic efficiency) and high CO2ER activity. The wide applicability of the proposed approach sheds light on the efficient CO2ER. This study provides a competitive strategy for rational catalyst design and underscores the significance of adsorption behavior tuning in electrocatalysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过精确电荷捐赠调制对二氧化碳吸附行为进行可控调节,实现高选择性二氧化碳电还原成甲酸
通过二氧化碳电还原(CO2ER)合成高附加值产品意义重大,但开发高效、多用途的可控选择性调节策略却极具挑战性。本文提出了通过调节 CO2 吸附行为来调节 CO2ER 选择性的方法。利用构建的沸石 MOF(SNNU-339),通过精确的配体-金属电荷捐赠(LTMCD)调节,可控地将 CO2 吸附行为从 *CO2 转变为 CO2*。研究证实,配位配体的高电负性直接限制了 LTMCD,降低了金属位点上的电荷密度,降低了 CO2* 吸附的吉布斯自由能,导致 CO2 吸附模式从 *CO2 转变为 CO2*。由于调制的 CO2 吸附行为和调节的动力学,SNNU-339 表现出卓越的 HCOOH 选择性(促进率≈330%,法拉第效率 85.6%)和高 CO2ER 活性。所提出方法的广泛适用性为高效 CO2ER 提供了启示。这项研究为催化剂的合理设计提供了一种有竞争力的策略,并强调了吸附行为调整在电催化中的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Bimodal Droplet-Based Electricity Generation Through Semi Cassini Oval Dynamic Morphology Control. Biomimetic Superhydrophobic Surfaces by Nanoarchitectonics with Natural Sunflower Pollen. Disulfide-Rich Self-Assembling Peptides Based on Aromatic Amino Acid. Electronic Structure Engineering of RuNi Alloys Decrypts Hydrogen and Hydroxyl Active Site Separation and Enhancement for Efficient Alkaline Hydrogen Evolution. In Situ Transformable Fibrillar Clusters Disrupt Intracellular Copper Metabolic Homeostasis by Comprehensive Blockage of Cuprous Ions Efflux.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1