{"title":"Controlled stiffness and diffusivity of poly(ethylene glycol) hydrogel formed with cellulose-nanofiber framework","authors":"Donghyun Jo , Yujin Kong , Chang Seok Ki","doi":"10.1016/j.polymer.2024.127753","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels composed of polymer networks are widely used in industry and scientific research for high water retention and unique mechanical properties. Nevertheless, in ordinary hydrogel formation, the trade-off relationship between stiffness and mesh size remains a crucial consideration for practical applications. This study describes a facile approach to controlling hydrogel stiffness and mesh size by hybridizing poly (ethylene glycol) diacrylate (PEGDA) and methacrylated TEMPO-oxidized cellulose nanofibers (T-CNFMA). After disintegrating T-CNF by ultrasonication, T-CNFMA was synthesized resulting in a degree of substitution of 2.04 mmol/g. Incorporation of T-CNFMA in the PEGDA network allowed for independent control of hydrogel stiffness and mesh size by reinforcing the whole hydrogel network as a framework. Consequently, the swelling ratio and shear modulus could be manipulated by controlling the PEGDA/T-CNFMA ratio. Structural analyses revealed that an increase in the T-CNFMA content in the presence of a low amount of PEGDA resulted in a large mesh size with a constant stiffness. The diffusivity test was also consistent with the properties of the hydrogels. This result indicates that the incorporation of T-CNF in hydrogel network is useful to control the physical property of the hydrogel, especially for varying mesh size, regardless of stiffness alteration.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"313 ","pages":"Article 127753"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124010899","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogels composed of polymer networks are widely used in industry and scientific research for high water retention and unique mechanical properties. Nevertheless, in ordinary hydrogel formation, the trade-off relationship between stiffness and mesh size remains a crucial consideration for practical applications. This study describes a facile approach to controlling hydrogel stiffness and mesh size by hybridizing poly (ethylene glycol) diacrylate (PEGDA) and methacrylated TEMPO-oxidized cellulose nanofibers (T-CNFMA). After disintegrating T-CNF by ultrasonication, T-CNFMA was synthesized resulting in a degree of substitution of 2.04 mmol/g. Incorporation of T-CNFMA in the PEGDA network allowed for independent control of hydrogel stiffness and mesh size by reinforcing the whole hydrogel network as a framework. Consequently, the swelling ratio and shear modulus could be manipulated by controlling the PEGDA/T-CNFMA ratio. Structural analyses revealed that an increase in the T-CNFMA content in the presence of a low amount of PEGDA resulted in a large mesh size with a constant stiffness. The diffusivity test was also consistent with the properties of the hydrogels. This result indicates that the incorporation of T-CNF in hydrogel network is useful to control the physical property of the hydrogel, especially for varying mesh size, regardless of stiffness alteration.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.