Spin switching in Sm0.7Er0.3FeO3 triggered by terahertz magnetic-field pulses

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nature Materials Pub Date : 2024-10-25 DOI:10.1038/s41563-024-02034-4
Zhenya Zhang, Minoru Kanega, Kei Maruyama, Takayuki Kurihara, Makoto Nakajima, Takehiro Tachizaki, Masahiro Sato, Yoshihiko Kanemitsu, Hideki Hirori
{"title":"Spin switching in Sm0.7Er0.3FeO3 triggered by terahertz magnetic-field pulses","authors":"Zhenya Zhang, Minoru Kanega, Kei Maruyama, Takayuki Kurihara, Makoto Nakajima, Takehiro Tachizaki, Masahiro Sato, Yoshihiko Kanemitsu, Hideki Hirori","doi":"10.1038/s41563-024-02034-4","DOIUrl":null,"url":null,"abstract":"<p>Driving spin systems to states far from equilibrium is indispensable in investigations of functional nonlinearities of antiferromagnets for spintronics. So far, it has been shown that electric-field pulses in the spectral region from the visible to the terahertz range can be used to induce ultrafast switching between different spin states. Here we demonstrate that a multicycle terahertz magnetic-field pulse can be used to induce non-thermal spin switching in antiferromagnets. When a strong pulse is applied to Sm<sub>0.7</sub>Er<sub>0.3</sub>FeO<sub>3</sub>, the magnetic order parameter is first driven away from the barrier between the two potential minima of this antiferromagnet and then, in the subsequent inertial motion towards the opposite direction, it crosses the barrier. Our analysis reveals that the initial motion is driven by a dynamical modification of the magnetic potential, and this modification is enhanced through coupling between the two magnon modes.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":null,"pages":null},"PeriodicalIF":37.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02034-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Driving spin systems to states far from equilibrium is indispensable in investigations of functional nonlinearities of antiferromagnets for spintronics. So far, it has been shown that electric-field pulses in the spectral region from the visible to the terahertz range can be used to induce ultrafast switching between different spin states. Here we demonstrate that a multicycle terahertz magnetic-field pulse can be used to induce non-thermal spin switching in antiferromagnets. When a strong pulse is applied to Sm0.7Er0.3FeO3, the magnetic order parameter is first driven away from the barrier between the two potential minima of this antiferromagnet and then, in the subsequent inertial motion towards the opposite direction, it crosses the barrier. Our analysis reveals that the initial motion is driven by a dynamical modification of the magnetic potential, and this modification is enhanced through coupling between the two magnon modes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太赫兹磁场脉冲触发 Sm0.7Er0.3FeO3 中的自旋开关
在研究用于自旋电子学的反铁磁体的功能非线性时,将自旋系统驱动到远离平衡的状态是不可或缺的。迄今为止,已有研究表明,从可见光到太赫兹范围内的电场脉冲可用于诱导不同自旋态之间的超快切换。在这里,我们证明了多周期太赫兹磁场脉冲可用于诱导反铁磁体中的非热自旋切换。当对 Sm0.7Er0.3FeO3 施加强脉冲时,磁序参数首先被驱离该反铁磁体两个电位极小值之间的势垒,然后在随后朝相反方向的惯性运动中穿过势垒。我们的分析表明,初始运动是由磁势的动态变化驱动的,而这种变化通过两个磁子模式之间的耦合得到了加强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
期刊最新文献
Spin switching in Sm0.7Er0.3FeO3 triggered by terahertz magnetic-field pulses Formation, chemical evolution and solidification of the dense liquid phase of calcium (bi)carbonate Antagonistic-contracting high-power photo-oscillators for multifunctional actuations Obtaining V2(PO4)3 by sodium extraction from single-phase NaxV2(PO4)3 (1 < x < 3) positive electrode materials Perovskite microcavities spin the light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1