Photothermally-Induced Reversible Rigidity of Nacre-Mimetic Composites Toward Semi-Active Personal Safeguard

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-24 DOI:10.1002/adfm.202414780
Zimu Li, Sheng Wang, Shuai Liu, Wenhui Wang, Jianpeng Wu, Tingting Xuan, Zhentao Zhang, Danyi Li, Yuqian Ma, Xinglong Gong
{"title":"Photothermally-Induced Reversible Rigidity of Nacre-Mimetic Composites Toward Semi-Active Personal Safeguard","authors":"Zimu Li, Sheng Wang, Shuai Liu, Wenhui Wang, Jianpeng Wu, Tingting Xuan, Zhentao Zhang, Danyi Li, Yuqian Ma, Xinglong Gong","doi":"10.1002/adfm.202414780","DOIUrl":null,"url":null,"abstract":"The capacity to withstand challenges posed by complex environments is crucial for developing advanced high-performance protective materials with mechanically adjustable nature. By constructing long-range hierarchical network of shear-stiffening gel-carbon nanotube-cellulose nanofiber (SCC) embedded within epoxy resin (ER), this work engineers a nacre-inspired variable-stiffness SCC-ER composite (SCCE). Lightweight SCC scaffold attenuates falling impact force from 2.23 to 0.46 kN, and reaches 60 °C within 20 s under 1 sun exposure. Additionally, owing to the rigid ER matrix, SCCE exhibits 4.03 GPa elastic modulus, outperforming numerous conventional engineering materials in puncture resistance. Specific energy absorption of nacre-mimetic SCCE presents 1.91 MJ m<sup>−3</sup> while that of random structural SCCE is only 0.50 MJ m<sup>−3</sup>. More importantly, SCCE features representative photothermal-induced reversible rigidity whose storage modulus varies from 9.85 MPa at 30 °C to 11.61 kPa at 116 °C under light stimulation. It also presents shape-programmability, capable of adhering complex structural surfaces for protection. Eventually, SCCE-based semi-active adjustable protectors are constructed that leverage contactless photothermal effect to modulate rigidity. 5 mm-thick smart SCCE-protectors resist 163.93 m s<sup>−1</sup> ballistic impact while 15-mm commercial kneepads are penetrated at lower speed of 136.98 m s<sup>−1</sup>. This bio-inspired semi-active strategy proposes a promising avenue for enhancing personal protective equipment.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414780","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The capacity to withstand challenges posed by complex environments is crucial for developing advanced high-performance protective materials with mechanically adjustable nature. By constructing long-range hierarchical network of shear-stiffening gel-carbon nanotube-cellulose nanofiber (SCC) embedded within epoxy resin (ER), this work engineers a nacre-inspired variable-stiffness SCC-ER composite (SCCE). Lightweight SCC scaffold attenuates falling impact force from 2.23 to 0.46 kN, and reaches 60 °C within 20 s under 1 sun exposure. Additionally, owing to the rigid ER matrix, SCCE exhibits 4.03 GPa elastic modulus, outperforming numerous conventional engineering materials in puncture resistance. Specific energy absorption of nacre-mimetic SCCE presents 1.91 MJ m−3 while that of random structural SCCE is only 0.50 MJ m−3. More importantly, SCCE features representative photothermal-induced reversible rigidity whose storage modulus varies from 9.85 MPa at 30 °C to 11.61 kPa at 116 °C under light stimulation. It also presents shape-programmability, capable of adhering complex structural surfaces for protection. Eventually, SCCE-based semi-active adjustable protectors are constructed that leverage contactless photothermal effect to modulate rigidity. 5 mm-thick smart SCCE-protectors resist 163.93 m s−1 ballistic impact while 15-mm commercial kneepads are penetrated at lower speed of 136.98 m s−1. This bio-inspired semi-active strategy proposes a promising avenue for enhancing personal protective equipment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光热诱导仿珍珠质复合材料的可逆刚性,实现半主动个人安全防护
能否承受复杂环境带来的挑战,对于开发具有机械可调性的先进高性能防护材料至关重要。通过在环氧树脂(ER)中嵌入剪切加固凝胶-碳纳米管-纤维素纳米纤维(SCC)构建长程分层网络,这项研究设计出了一种由珍珠岩启发的可变刚度 SCC-ER 复合材料(SCCE)。轻质 SCC 支架可将坠落的冲击力从 2.23 千牛减小到 0.46 千牛,并在 20 秒内达到 60 °C。此外,由于采用了刚性ER基质,SCCE显示出4.03 GPa的弹性模量,在抗穿刺性方面优于许多传统工程材料。仿珍珠质 SCCE 的比能量吸收为 1.91 MJ m-3,而随机结构 SCCE 的比能量吸收仅为 0.50 MJ m-3。更重要的是,SCCE 具有代表性的光热诱导可逆刚性,在光刺激下,其存储模量从 30 °C 时的 9.85 兆帕变化到 116 °C 时的 11.61 千帕。它还具有形状可编程性,能够粘附复杂的结构表面,起到保护作用。最终,基于 SCCE 的半主动可调保护器被制造出来,利用非接触光热效应来调节刚性。5 毫米厚的智能 SCCE 保护器可抵御 163.93 米/秒的弹道冲击,而 15 毫米的商用护膝在 136.98 米/秒的较低速度下也能被击穿。这种由生物启发的半主动策略为增强个人防护装备提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Boosting Photocatalytic Hydrogen Evolution by a Light Coupling and Charge Carrier Confinement Strategy Constructing 2D PtSe2/PtCo Heterojunctions by Partial Selenization for Enhanced Hydrogen Evolution Advances and Challenges of Carbon-Free Gas-Diffusion Electrodes (GDEs) for Electrochemical CO2 Reduction High-Pressure Growth and Characterization of Seven-Layered CuBa2Ca6Cu7O17±δ Single Crystals Ag–Pt Alloy Nanoparticles Modified Zn-Based Nanosheets for Highly Selective CO2 Photoreduction to CH4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1