Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-10-25 DOI:10.1002/smll.202404023
Preetam Sharma, Douglas Aaron, Pierre Boillat, Lei Cheng, Christina Johnston, Matthew M. Mench
{"title":"Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells","authors":"Preetam Sharma, Douglas Aaron, Pierre Boillat, Lei Cheng, Christina Johnston, Matthew M. Mench","doi":"10.1002/smll.202404023","DOIUrl":null,"url":null,"abstract":"This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N<sub>2</sub> and air) to instigate Pt catalyst degradation. The study employs high-resolution neutron imaging and synchrotron micro-X-ray diffraction (micro-XRD) to map liquid water distribution and Pt particle size, respectively. Neutron radiographs reveal liquid water accumulation primarily within the diffusion media, especially under flow field lands, due to thermal resistance differences between channels and lands. Aged MEAs exhibit increased water retention, likely due to increased hydrophilicity of the diffusion media with aging. Synchrotron micro-XRD maps unveil significant heterogeneity in Pt particle size distribution in the aged MEAs, correlated with preferential liquid water accumulation under flow field lands. This study highlights the critical role of flow field design and water distribution in catalyst degradation, underscoring the need for innovative strategies to enhance fuel cell durability and performance.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202404023","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2 and air) to instigate Pt catalyst degradation. The study employs high-resolution neutron imaging and synchrotron micro-X-ray diffraction (micro-XRD) to map liquid water distribution and Pt particle size, respectively. Neutron radiographs reveal liquid water accumulation primarily within the diffusion media, especially under flow field lands, due to thermal resistance differences between channels and lands. Aged MEAs exhibit increased water retention, likely due to increased hydrophilicity of the diffusion media with aging. Synchrotron micro-XRD maps unveil significant heterogeneity in Pt particle size distribution in the aged MEAs, correlated with preferential liquid water accumulation under flow field lands. This study highlights the critical role of flow field design and water distribution in catalyst degradation, underscoring the need for innovative strategies to enhance fuel cell durability and performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Molecular Probing Coupled with Density Functional Theory Calculation to Reveal the Influence of Fe Doping on Fe-NiOOH Electrode for High Current Density of Water Splitting Combination Displacement/Intercalation Reaction of Ag0.11V2O5 Cathode Realizes Efficient Manganese Ion Storage Properties Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells Trace Ru Incorporation Boosted Co2P Nanorods for Superior Water Electrolysis and Substrate-Paired Electrolysis Toward Value-Added Chemicals in Alkaline Medium Vapor–Solid Interface Synthesis of Highly Crystalline Covalent Triazine Frameworks for Use as Efficient Photocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1