Andrea Begnoni, Lorenzo Valbusa Dall'Armi, Daniele Bertacca and Alvise Raccanelli
{"title":"Gravitational wave luminosity distance-weighted anisotropies","authors":"Andrea Begnoni, Lorenzo Valbusa Dall'Armi, Daniele Bertacca and Alvise Raccanelli","doi":"10.1088/1475-7516/2024/10/087","DOIUrl":null,"url":null,"abstract":"Measurements of the luminosity distance of propagating gravitational waves can provide invaluable information on the geometry and content of our Universe. Due to the clustering of cosmic structures, in realistic situations we need to average the luminosity distance of events coming from patches inside a volume. In this work we evaluate, in a gauge-invariant and fully-relativistic treatment, the impact of cosmological perturbations on such averaging process. We find that clustering, lensing and peculiar velocity effects impact estimates for future detectors such as Einstein Telescope, Cosmic Explorer, the Big Bang Observer and DECIGO. The signal-to-noise ratio of the angular power spectrum of the average luminosity distance over all the redshift bins is 17 in the case of binary black holes detected by Einstein Telescope and Cosmic Explorer. We also provide fitting formulas for the corrections to the average luminosity distance due to general relativistic effects.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"4 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/10/087","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Measurements of the luminosity distance of propagating gravitational waves can provide invaluable information on the geometry and content of our Universe. Due to the clustering of cosmic structures, in realistic situations we need to average the luminosity distance of events coming from patches inside a volume. In this work we evaluate, in a gauge-invariant and fully-relativistic treatment, the impact of cosmological perturbations on such averaging process. We find that clustering, lensing and peculiar velocity effects impact estimates for future detectors such as Einstein Telescope, Cosmic Explorer, the Big Bang Observer and DECIGO. The signal-to-noise ratio of the angular power spectrum of the average luminosity distance over all the redshift bins is 17 in the case of binary black holes detected by Einstein Telescope and Cosmic Explorer. We also provide fitting formulas for the corrections to the average luminosity distance due to general relativistic effects.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.