{"title":"Effective quantum gravitational collapse in a polymer framework","authors":"Lorenzo Boldorini and Giovanni Montani","doi":"10.1088/1475-7516/2024/10/090","DOIUrl":null,"url":null,"abstract":"We study how the presence of an area gap, different than zero, affects the gravitational collapse of a dust ball. The implementation of such discreteness is achieved through the framework of polymer quantization, a scheme inspired by loop quantum gravity (LQG). We study the collapse using variables which represent the area, in order to impose the non-zero area gap condition. The collapse is analyzed for both the flat and spherical Oppenheimer-Snyder models. In both scenarios the formation of the singularity is avoided, due to the inversion of the velocity at finite values of the sphere surface. This happens due to the presence of a negative pressure, with origins at a quantum level. When the inversion happens inside the black hole event horizon, we achieve a geometry transition to a white hole. When the inversion happens outside the event horizon, we find a new possible astrophysical object. A characterization of such hypothetical object is done. Some constraints on the value for the area gap are also imposed in order to maintain the link with our already established physical theories.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"26 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/10/090","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study how the presence of an area gap, different than zero, affects the gravitational collapse of a dust ball. The implementation of such discreteness is achieved through the framework of polymer quantization, a scheme inspired by loop quantum gravity (LQG). We study the collapse using variables which represent the area, in order to impose the non-zero area gap condition. The collapse is analyzed for both the flat and spherical Oppenheimer-Snyder models. In both scenarios the formation of the singularity is avoided, due to the inversion of the velocity at finite values of the sphere surface. This happens due to the presence of a negative pressure, with origins at a quantum level. When the inversion happens inside the black hole event horizon, we achieve a geometry transition to a white hole. When the inversion happens outside the event horizon, we find a new possible astrophysical object. A characterization of such hypothetical object is done. Some constraints on the value for the area gap are also imposed in order to maintain the link with our already established physical theories.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.